Open Access

Calculation of Kinetic Parameters of Thermal Decomposition of Forest Waste using the Monte Carlo Technique


Cite

[1] Capart R., Khezami L., Burnham A. K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochimica Acta 2004:417:79–89. https://doi.org/10.1016/j.tca.2004.01.02910.1016/j.tca.2004.01.029Search in Google Scholar

[2] Conesa J. A., Caballero J., Marcilla A., Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochimica Acta 1995:254:175–192. https://doi.org/10.1016/0040-6031(94)02102-T10.1016/0040-6031(94)02102-TSearch in Google Scholar

[3] Dhaundiyal A., Singh S. B., Hanon M. M., Rawat R. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. Environmental and Climate Technologies 2018:22(1):5–21. https://doi.org/10.1515/rtuect-2018-000110.1515/rtuect-2018-0001Search in Google Scholar

[4] Yaroshenko A. P. Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds. Journal of Thermal Analysis and Calorimetry 2005:79:515–519. https://doi.org/10.1007/s10973-005-0571-310.1007/s10973-005-0571-3Search in Google Scholar

[5] Dhaundiyal A., Tewari P. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environmental and Climate Technologies 2017:19(1):15–32. https://doi.org/10.1515/rtuect-2017-000210.1515/rtuect-2017-0002Search in Google Scholar

[6] Dhaundiyal A., Singh S. B., Hanon M. M. Study of Distributed Activation Energy Model Using Bivariate Distribution Function, f(E1, E2). Thermal Science and Engineering Progress 2018:5:388–404. https://doi.org/10.1016/j.tsep.2018.01.00910.1016/j.tsep.2018.01.009Search in Google Scholar

[7] Galgano A., Blasi C. Di. Modeling Wood Degradation by the Unreacted-Core-Shrinking Approximation. Industrial & Engineering Chemistry Research 2003:42:2101–2111. https://doi.org/10.1021/ie020939o10.1021/ie020939oSearch in Google Scholar

[8] Morgan D. J., Brown M. A. Introduction to Thermal Analysis: Techniques and Applications. London and New York: Chapman and Hall, 1988.Search in Google Scholar

[9] Güneş M., Güneş S. The influences of various parameters on the numerical solution of non-isothermal DAEM equation. Thermochimica Acta 1999:336(1–2):93–96. https://doi.org/10.1016/S0040-6031(99)00207-510.1016/S0040-6031(99)00207-5Search in Google Scholar

[10] Dhaundiyal A., Singh S. B., Hanon M. M. Application of Archimedean copula in the non-isothermal nth order distributed activation energy model. Biofuels 2019:10:1–12. https://doi.org/10.1080/17597269.2018.144266210.1080/17597269.2018.1442662Search in Google Scholar

[11] Dhaundiyal A., Singh S. B. Mathematical insight to non-isothermal pyrolysis of pine needles for different probability distribution functions. Biofuels 2018:9(5):647–658. https://doi.org/10.1080/17597269.2017.132949510.1080/17597269.2017.1329495Search in Google Scholar

[12] Burnham A. K. Introduction to Chemical Kinetics. Global Chemical Kinetics of Fossil Fuels 2017:25–74. https://doi.org/10.1007/978-3-319-49634-4_210.1007/978-3-319-49634-4_2Search in Google Scholar

[13] Dhaundiyal A., Singh S. B. Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences 2016:70(2):64–70. https://doi.org/10.1515/prolas-2016-001110.1515/prolas-2016-0011Search in Google Scholar

[14] Cho W. K. T., Liu Y. Y. Sampling from complicated and unknown distributions: Monte Carlo and Markov Chain Monte Carlo methods for redistricting. Physica A: Statistical Mechanics and its Applications 2018:506:170–178. https://doi.org/10.1016/j.physa.2018.03.09610.1016/j.physa.2018.03.096Search in Google Scholar

[15] Guo X., Liu Z., Xiao Y., Xu X., Xue X., Liu Q. The Boltzmann-Monte-Carlo-Percolation (BMCP) model on pyrolysis of coal: The volatiles’ reactions. Fuel 2018:230:18–26. https://doi.org/10.1016/j.fuel.2018.05.01610.1016/j.fuel.2018.05.016Search in Google Scholar

[16] Dhaundiyal A., Abdulrahman T. M., Laszlo T. Thermo-kinetics of Forest Waste Using Model-Free Methods. Multidisciplinary Sciences 2019:24(1):465–495. https://doi.org/10.11144/javeriana.sc24-1.tofw10.11144/Javeriana.SC24-1.tofwSearch in Google Scholar

[17] Korobeinichev O. P., Paletsky A. A., Gonchikzhapov M. B., Shundrina I. K., Chen H., Liu. N. Combustion Chemistry and Decomposition Kinetics of Forest Fuels. Procedia Engineering 2013:62:182–193. https://doi.org/10.1016/j.proeng.2013.08.05410.1016/j.proeng.2013.08.054Search in Google Scholar

[18] Dhaundiyal, A., Toth, L. Modeling of Hardwood Pyrolysis Using the Convex Combination of the Mass Conversion Points. Journal of Energy Resources Technology, Transactions of the ASME 2019:142(6):061901. https://doi.org/10.1115/1.404545810.1115/1.4045458Search in Google Scholar

[19] Dhaundiyal, A. et al. Analysis of pyrolysis reactor for hardwood (Acacia) chips. Renewable Energy 2020:147(Part 1):1979–1989. https://doi.org/10.1016/j.renene.2019.09.09510.1016/j.renene.2019.09.095Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other