Open Access

Investigation on Physicochemical Properties of Wastewater Grown Microalgae Methyl Ester and its Effects on CI Engine


Cite

[1] Demirbas A., Demirbas M. F. Algae energy: algae as a new source of biodiesel. London: Springer, 2010. https://doi.org/10.1007/978-1-84996-050-210.1007/978-1-84996-050-2Search in Google Scholar

[2] Gulum M., Bilgin A. An Experimental Optimization Research of Methyl and Ethyl Esters Production from Safflower Oil. Environmental and Climate Technologies 2018:22(1):132–148. https://doi.org/10.2478/rtuect-2018-000910.2478/rtuect-2018-0009Search in Google Scholar

[3] Ahmad A. L., Yasin M. N. H., Derek C. J. C., Lim J. K. Microalgae as a sustainable energy source for biodiesel production: a review. Renewable and Sustainable Energy Reviews 2011:15(1):584–593. https://doi.org/10.1016/j.rser.2010.09.01810.1016/j.rser.2010.09.018Search in Google Scholar

[4] Pittman J. K., Dean A. P., Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology 2011:102(1):17–25. https://doi.org/10.1016/j.biortech.2010.06.03510.1016/j.biortech.2010.06.03520594826Search in Google Scholar

[5] Lam M. K., Lee K. T. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology Advances 2012:30(3):673–690. https://doi.org/10.1016/j.biotechadv.2011.11.00810.1016/j.biotechadv.2011.11.00822166620Search in Google Scholar

[6] Maity J. P., Bundschuh J., Chen C.-Y., Bhattacharya P. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – a mini review. Energy 2014:78:104–113. https://doi.org/10.1016/j.energy.2014.04.00310.1016/j.energy.2014.04.003Search in Google Scholar

[7] Elegbede I., Guerrero C. Algae biofuel in the Nigerian energy context. Environmental and Climate Technologies 2016:17:44–60. https://doi.org/10.1515/rtuect-2016-000510.1515/rtuect-2016-0005Search in Google Scholar

[8] Qari H., Rehan M., Nizami A.-S. Key issues in microalgae biofuels: a short review. Energy Procedia 2017:142:898–903. https://doi.org/10.1016/j.egypro.2017.12.14410.1016/j.egypro.2017.12.144Search in Google Scholar

[9] Chen J., Li J., Dong W., Zhang X., Tyagi D. R., Drogui P., Surampalli Y. The potential of microalgae in biodiesel production. Renewable and Sustainable Energy Reviews 2018:90:336–346. https://doi.org/10.1016/j.rser.2018.03.07310.1016/j.rser.2018.03.073Search in Google Scholar

[10] Mussgnug J. H., Klassen V., Schluter A., Kruse O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology 2010:150(1):51–56. https://doi.org/10.1016/j.jbiotec.2010.07.03010.1016/j.jbiotec.2010.07.03020691224Search in Google Scholar

[11] Wijffels R. H., Kruse O., Hellingwerf K. J. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Current Opinion in Biotechnology 2013:24(3):405–413. https://doi.org/10.1016/j.copbio.2013.04.00410.1016/j.copbio.2013.04.004Search in Google Scholar

[12] Guiry M. D. How many species of algae are there? Journal of Phycology 2012:48(5):1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.x10.1111/j.1529-8817.2012.01222.xSearch in Google Scholar

[13] Griffiths M. J., Harrison S. T. L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology 2009:21(5):493–507. https://doi.org/10.1007/s10811-008-9392-710.1007/s10811-008-9392-7Search in Google Scholar

[14] Al-lwayzy S. H., Yusaf T., Al-Juboori R. A. Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies 2014:7(3):1829–1851. https://doi.org/10.3390/en703182910.3390/en7031829Search in Google Scholar

[15] Rodolfi L., Zittelli G. C., Bassi N., Padovani G., Biondi N., Bonini G., Tredici M. R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering 2009:102(1):100–112. https://doi.org/10.1002/bit.2203310.1002/bit.22033Search in Google Scholar

[16] Chan Y., Jun S.-Y., Lee J.-Y., Ahn C.-Y., Oh H.-M. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 2010:101(1):71–74. https://doi.org/10.1016/j.biortech.2009.03.03010.1016/j.biortech.2009.03.030Search in Google Scholar

[17] Xiaoli C., Zhao X. Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank. Bioresource Technology 2012:116:360–365. https://doi.org/10.1016/j.biortech.2012.03.10510.1016/j.biortech.2012.03.105Search in Google Scholar

[18] Lukasz B., Patyna A., Placzek M., Witczak S. Cultivation of microalgae (Chlorella vulgaris) in laboratory photobioreactor. Economic and Environmental Studies 2016:4:843–852.Search in Google Scholar

[19] Yang J., Xu M., Zhang X., Hu O., Sommerfeld M., Chen Y. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technology 2011:102(1):159–165. https://doi.org/10.1016/j.biortech.2010.07.01710.1016/j.biortech.2010.07.017Search in Google Scholar

[20] Zhukova N. V., Aizdaicher N. A. Fatty acid composition of 15 species of marine microalgae. Phytochemistry 1995:39(2):351–356. https://doi.org/10.1016/0031-9422(94)00913-E10.1016/0031-9422(94)00913-ESearch in Google Scholar

[21] Yousef H., Selim M. Y. E., Abdulrehman T. Combustion of algae oil methyl ester in an indirect injection diesel engine. Energy 2011:36(3):1827–1835. https://doi.org/10.1016/j.energy.2010.11.01710.1016/j.energy.2010.11.017Search in Google Scholar

[22] Chen Y. H., Huang B. Y., Chiang T. H., Tang T. C. Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel. Fuel 2012:94:270–273. https://doi.org/10.1016/j.fuel.2011.11.03110.1016/j.fuel.2011.11.031Search in Google Scholar

[23] Al-Lwayzy S. H., Yusaf T. Chlorella protothecoides microalgae as an alternative fuel for tractor diesel engines. Energies 2013:6(2):766–783. https://dx.doi.org/10.3390/en602076610.3390/en6020766Search in Google Scholar

[24] Tuccar G., Aydın K. Evaluation of methyl ester of microalgae oil as fuel in a diesel engine. Fuel 2013:112:203–207. https://doi.org/10.1016/j.fuel.2013.05.01610.1016/j.fuel.2013.05.016Search in Google Scholar

[25] Makareviciene V., Lebedevas S., Rapalis P., Gumbyte M., Skorupskaite V., Zaglinskis J. Performance and emission characteristics of diesel fuel containing microalgae oil methyl esters. Fuel 2014:120:233–239. https://doi.org/10.1016/j.fuel.2013.11.04910.1016/j.fuel.2013.11.049Search in Google Scholar

[26] Ozsezen A. N., Canakci M., Turkcan A., Sayin C. Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters. Fuel 2009:88(4):629–636. https://doi.org/10.1016/j.fuel.2008.09.02310.1016/j.fuel.2008.09.023Search in Google Scholar

[27] An H., Yang W. M., Maghbouli A., Li J., Chou S. K., Chua K. J. Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils. Applied Energy 2013:112:493–499. https://doi.org/10.1016/j.apenergy.2012.12.04410.1016/j.apenergy.2012.12.044Search in Google Scholar

[28] Chen Y.-H., Huang B.-Y., Chiang T.-H., Tang T.-C. Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel, Fuel 2012:94:270–273. https://doi.org/10.1016/j.fuel.2011.11.03110.1016/j.fuel.2011.11.031Search in Google Scholar

[29] Satputaley S. S., Zodpe D. B., Deshpande N. V. Performance, combustion and emission study on CI engine using microalgae oil and microalgae oil methyl esters. Journal of the Energy Institute 2017:90(4):1–9. https://doi.org/10.1016/j.joei.2016.05.01110.1016/j.joei.2016.05.011Search in Google Scholar

[30] Islam M. A., Rahman M. M., Heimann K., Nurun M. N., Ristovski Z. D., Dowell A., Thomas G., Feng B., Von Alvensleben N., Brown J. R. Combustion analysis of microalgae methyl ester in a common rail direct injection diesel engine. Fuel 2015:143:351–360. https://doi.org/10.1016/j.fuel.2014.11.06310.1016/j.fuel.2014.11.063Search in Google Scholar

[31] Jitesh P., Kumar S. N., Deep A., Sharma A., Gupta D. Evaluation of emission characteristics of blend of algae oil methyl ester with diesel in a medium capacity diesel engine. Technical Paper 2014:01:378, SAE International, 2014. https://doi.org/10.4271/2014-01-137810.4271/2014-01-1378Search in Google Scholar

[32] Mwangi J. K., Lee W.-J., Whang L.-M., Wu T. S., Chen W.-H., Chang J.-S., Chen C.-Y., Chen C.-L. Microalgae oil: Algae cultivation and harvest, algae residue torrefaction and diesel engine emissions tests. Aerosol and Air Quality Research 2015:15(1):81–98. https://doi.org/10.4209/aaqr.2014.10.026810.4209/aaqr.2014.10.0268Search in Google Scholar

[33] Thangavel M., Kumar T. S., Chandrasekar M., Uma L., Prabaharan D. Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel. Renewable Energy 2017:105:637–646. https://doi.org/10.1016/j.renene.2016.12.09010.1016/j.renene.2016.12.090Search in Google Scholar

[34] Al-lwayzy S. H., Yusaf T. Diesel engine performance and exhaust gas emissions using Microalgae Chlorella protothecoides biodiesel. Renewable Energy 2017:101:690–701. https://doi.org/10.1016/j.renene.2016.09.03510.1016/j.renene.2016.09.035Search in Google Scholar

[35] Satputaley S. S., Zodpe D. B., Deshpande N. V. Performance, combustion and emission study on CI engine using microalgae oil and microalgae oil methyl esters. Journal of the Energy Institute 2017:90(4):513–521. https://doi.org/10.1016/j.joei.2016.05.01110.1016/j.joei.2016.05.011Search in Google Scholar

[36] Wahlen B. D., Morgan M. R., McCurdy A. T., Willis R. M., Morgan M. D., Dye D. J., Bugbee B., Wood B. D., Seefeldt L. C. Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions. Energy & Fuels 2012:27(1):220–228. https://doi.org/10.1021/ef301238210.1021/ef3012382Search in Google Scholar

[37] Devendra S., Subramanian K. A., Juneja M., Singh K., Singh S., Badola R., Singh N. Investigating the effect of fuel cetane number, oxygen content, fuel density, and engine operating variables on NOx emissions of a heavy duty diesel engine. Environmental Progress & Sustainable Energy 2017:36(1):214–221. https://doi.org/10.1002/ep.1243910.1002/ep.12439Search in Google Scholar

[38] Devendra S., Singal S. K., Garg M. O., Maiti P., Mishra S., Ghosh P. K. Transient performance and emission characteristics of a heavy-duty diesel engine fuelled with microalga Chlorella variabilis and Jatropha curcas biodiesels. Energy Conversion and Management 2015:106:892–900. https://doi.org/10.1016/j.enconman.2015.10.02310.1016/j.enconman.2015.10.023Search in Google Scholar

[39] Farhad M. H., Rainey T. J., Ristovski Z., Brown R. J. Performance and exhaust emissions of diesel engines using microalgae FAME and the prospects for microalgae HTL biocrude. Renewable and Sustainable Energy Reviews 2018:82:4269–4278. https://doi.org/10.1016/j.rser.2017.06.02610.1016/j.rser.2017.06.026Search in Google Scholar

[40] Scragg A. H., Morrison J., Shales S. W. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme and Microbial Technology 2003:33(7):884–889. https://doi.org/10.1016/j.enzmictec.2003.01.00110.1016/j.enzmictec.2003.01.001Search in Google Scholar

[41] Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology 2001:57(3):287–293. https://doi.org/10.1007/s00253010070210.1007/s00253010070211759675Search in Google Scholar

[42] Bitog J. P., Lee I.-B., Lee C.-G., Kim K.-S., Hwang H.-S., Hong S.-W., Seo I.-H., Kwon K.-S., Mostafa E. Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Computers and Electronics in Agriculture 2011:76(2):131–147. https://doi.org/10.1016/j.compag.2011.01.01510.1016/j.compag.2011.01.015Search in Google Scholar

[43] Kong W., Song H., Cao Y., Yang H., Hua S., Xia C. The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. African Journal of Biotechnology 2011:10(55):11620–11630.Search in Google Scholar

[44] Huda Q., Rehan M., Nizami A.-S. Key issues in microalgae biofuels: a short review. Energy Procedia 2017:142:898–903. https://doi.org/10.1016/j.egypro.2017.12.14410.1016/j.egypro.2017.12.144Search in Google Scholar

[45] Rahman M. M., Pourkhesalian A. M., Jahirul M. I., Stevanovic S., Pham P. X., Wang H., Masri A. R., Brown R. J., Ristovski Z. D. Particle emissions from biodiesels with different physical properties and chemical composition. Fuel 2014:134:201–208. https://doi.org/10.1016/j.fuel.2014.05.05310.1016/j.fuel.2014.05.053Search in Google Scholar

[46] Buyukkaya E. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 2010:89(10):3099–3105. https://doi.org/10.1016/j.fuel.2010.05.03410.1016/j.fuel.2010.05.034Search in Google Scholar

[47] Mofijur M., Atabani A. E., al Masjuki H. H., Kalam M. A., Masum B. M. A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation. Renewable and Sustainable Energy Reviews 2013:23:391–404. https://doi.org/10.1016/j.rser.2013.03.00910.1016/j.rser.2013.03.009Search in Google Scholar

[48] Ghazali W. N. M. W., Mamat R., Masjuki H. H., Gholamhassan N. Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renewable and Sustainable Energy Reviews 2015:51:585–602. https://doi.org/10.1016/j.rser.2015.06.03110.1016/j.rser.2015.06.031Search in Google Scholar

[49] Murillo S., Miguez J. L., Porteiro J., Granada E., Moran J. C. Performance and exhaust emissions in the use of biodiesel in outboard diesel engines. Fuel 2007:86:1765–1771. https://doi.org/10.1016/j.fuel.2006.11.03110.1016/j.fuel.2006.11.031Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other