Open Access

Function of the S1P pathway in hypoxia-induced cardiovascular failure


Cite

Inoue T, Node K. Vascular failure: A new clinical entity for vascular disease. Journal of hypertension. 2006;24(11):2121-30. DOI: 10.1097/01.hjh.0000249684.76296.4f Search in Google Scholar

Ziaeian B, Fonarow G: Epidemiology and aetiology of heart failure. Nature Rev Cardiol. 2016;13(6):368-78. DOI: 10.1038/nrcardio.2016.25 Search in Google Scholar

Narula J, Haider N, Arbustini E, Chandrashekhar Y. Mechanisms of disease: apoptosis in heart failure-seeing hope in death. Nature clinical practice Cardiovascular medicine 2006;3(12):681-8. DOI: 10.1038/ncpcardio0710 Search in Google Scholar

Gaudino M, Andreotti F, Kimura T. Current concepts in coronary artery revascularisation. Lancet (London, England) 2023;401(10388):1611-28. DOI: 10.1016/S0140-6736(23)00459-2 Search in Google Scholar

Agrawal R, Sharafkhaneh A, Nambi V, BaHammam A, Razjouyan J. Obstructive sleep apnea modulates clinical outcomes post-acute myocardial infarction: A large longitudinal veterans’ dataset report. Respiratory Med. 2023;211:107214. DOI: 10.1016/j. rmed.2023.107214 Search in Google Scholar

Lu M, Fang F, Wang Z, Xu L, Sanderson J, Zhan X, et al. Association Between OSA and Quantitative Atherosclerotic Plaque Burden: A Coronary CT Angiography Study. Chest. 2021;160(5):1864-74. DOI: 10.1016/j.chest.2021.07.040 Search in Google Scholar

Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. New England J Med. 2013;368(21):2004-2013. DOI: 10.1056/NEJMra1216063 Search in Google Scholar

Björkegren J, Lusis A. Atherosclerosis: Recent developments. Cell. 2022;185(10):1630-45. DOI: 10.1016/j.cell.2022.04.004 Search in Google Scholar

Daugherty A. Mouse models of atherosclerosis. Am J Med Sci. 2002;323(1):3-10. DOI: 10.1097/00000441-200201000-00002 Search in Google Scholar

Zhang Y, Fatima M, Hou S, Bai L, Zhao S, Liu E. Research methods for animal models of atherosclerosis (Review). Molec Med Rep. 2021;24(6). DOI: 10.3892/mmr.2021.12511 Search in Google Scholar

Morand J, Arnaud C, Pepin J, Godin-Ribuot D. Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death. Sci Rep. 2018;8(1):2997. DOI: 10.1038/s41598-018-21064-y Search in Google Scholar

[Chinese guidelines for the diagnosis and treatment of heart failure 2018]. Zhonghua xin xue guan bing za zhi 2018;46(10):760-89. Search in Google Scholar

Cowie M, Gallagher A. Sleep Disordered Breathing and Heart Failure: What Does the Future Hold? JACC Heart failure. 2017;5(10):715-23. DOI: 10.1016/j.jchf.2017.06.016 Search in Google Scholar

Tsai H, Han M. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. Drugs. 2016;76(11):1067-79. DOI: 10.1007/s40265-016-0603-2 Search in Google Scholar

Yu F, Yuan C, Tong J, Zhang G, Zhou F, Yang F. Protective effect of sphingosine-1-phosphate for chronic intermittent hypoxia-induced endothelial cell injury. Biochem Biophys Res Com. 2018;498(4):1016-21. DOI: 10.1016/j.bbrc.2018.03.106 Search in Google Scholar

Maceyka M, Spiegel S: Sphingolipid metabolites in inflammatory disease. Nature. 2014;510(7503):58-67. DOI: 10.1038/nature13475 Search in Google Scholar

Syed S, Raue R, Weigert A, von Knethen A, Brüne B. Macrophage S1PR1 Signaling Alters Angiogenesis and Lymphangiogenesis During Skin Inflammation. Cells. 2019;8(8). DOI: 10.3390/cells8080785 Search in Google Scholar

Yoon C, Hong B, Moon H, Lim S, Suh P, Kim Y, et al. Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways. Blood. 2008;112(4):1129-1138. DOI: 10.1182/blood-2007-11-125203 Search in Google Scholar

Zhang J, Hu C, Jiao X, Yang Y, Li J, Yu H, et al. Potential Role of mRNAs and LncRNAs in Chronic Intermittent Hypoxia Exposure-Aggravated Atherosclerosis. Front Genet. 2020;11:290. DOI: 10.3389/fgene.2020.00290 Search in Google Scholar

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9:559. DOI: 10.1186/1471-2105-9-559 Search in Google Scholar

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al: clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation. 2021;2(3):100141. DOI: 10.1016/j.xinn.2021.100141 Search in Google Scholar

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576-589. DOI: 10.1016/j. molcel.2010.05.004 Search in Google Scholar

Zhang G, Yu F, Li Y, Wei Q, Song S, Zhou F, Tong J. Prolyl 4-Hydroxylase Domain Protein 3 Overexpression Improved Obstructive Sleep Apnea-Induced Cardiac Perivascular Fibrosis Partially by Suppressing Endothelial-to-Mesenchymal Transition. J Am Heart Assoc. 2017,;6(10). DOI: 10.1161/JAHA.117.006680 Search in Google Scholar

Zhang J, Hu C, Jiao X, Yang Y, Li J, Yu H, et al. Potential Role of mRNAs and LncRNAs in Chronic Intermittent Hypoxia Exposure-Aggravated Atherosclerosis. Front Genetics. 2020;11:290. DOI: 10.3389/fgene.2020.00290 Search in Google Scholar

Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu L, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Res. 2014, 103(4):530-541. DOI: 10.1093/cvr/cvu167 Search in Google Scholar

Alioglu E, Ercan E, Sonmez Tamer G, Duman C, Turk U, Tengiz I, et al. Decreased circulatory erythropoietin in hyperacute phase of myocardial ischemia. Int J Cardiol. 2011;146(3):e49-52. DOI: 10.1016/j.ijcard.2008.12.184 Search in Google Scholar

Bilo G, Gatterer H, Torlasco C, Villafuerte F, Parati G. Editorial: Hypoxia in cardiovascular disease. Front Cardiovasc Med. 2022;9:990013. DOI: 10.3389/fcvm.2022.990013 Search in Google Scholar

Kubasiak L, Hernandez O, Bishopric N, Webster K. Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(20):12825-12830. DOI: 10.1073/pnas.202474099 Search in Google Scholar

Pio-Abreu A, Moreno H, Drager L. Obstructive sleep apnea and ambulatory blood pressure monitoring: current evidence and research gaps. J Human Hypert. 2021;35(4):315-324. DOI: 10.1038/s41371-020-00470-8 Search in Google Scholar

Cartier A, Hla T: Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2019;366(6463). DOI: 10.1126/science.aar5551 Search in Google Scholar

Bravo G, Cedeño R, Casadevall M, Ramió-Torrentà L. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives. Cells. 2022;11(13):2058. DOI: 10.3390/cells11132058 Search in Google Scholar

Psallidas I, Stathopoulos G, Maniatis N, Magkouta S, Moschos C, Karabela S, et al. Secreted phosphoprotein-1 directly provokes vascular leakage to foster malignant pleural effusion. Oncogene. 2013;32(4):528-35. DOI: 10.1038/onc.2012.57 Search in Google Scholar

Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591-619. DOI: 10.1146/annurev. immunol.021908.132706 Search in Google Scholar

Lee TS, Lu TM, Chen CH, Guo BC, Hsu CP. Hyperuricemia induces endothelial dysfunction and accelerates atherosclerosis by disturbing the asymmetric dimethylarginine/dimethylarginine dimethylaminotransferase 2 pathway. Redox Biol. 2021;46:102108. DOI: 10.1016/j.redox.2021.102108 Search in Google Scholar

Mandl M, Kapeller B, Lieber R, Macfelda K. Hypoxia-inducible factor-1β (HIF-1β) is upregulated in a HIF-1α-dependent manner in 518A2 human melanoma cells under hypoxic conditions. Biochem Biophys Res Commun. 2013;434(1):166-72. DOI: 10.1016/j.bbrc.2013.03.051 Search in Google Scholar

Semenza G: Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399-408. DOI: 10.1016/j.cell.2012.01.021 Search in Google Scholar

Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. Journal of cardiology 2023.81(2):202-208. DOI: 10.1016/j.jjcc.2022.09.002 Search in Google Scholar

Masoud G, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015 Sep;5(5):378-89. DOI: 10.1016/j.apsb.2015.05.007 Search in Google Scholar

Sakai D, Sugawara T, Kurokawa T, Murakami Y, Tomosugi M, Masuta H, et al. Hif1α-dependent hypoxia signaling contributes to the survival of deep-layer neurons and cortex formation in a mouse model. Molec Brain. 2022;15(1):28. DOI: 10.1186/s13041-022-00911-0 Search in Google Scholar

Bouquerel P, Gstalder C, Müller D, Laurent J, Brizuela L, Sabbadini RA, et al: Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2α expression and activity in cancer. Oncogenesis. 2016;5(3):e209. DOI: 10.1038/oncsis.2016.13 Search in Google Scholar

Wu T, Shao Y, Li X, Wu T, Yu L, Liang J, et al. NR3C1/Glucocorticoid receptor activation promotes pancreatic β-cell autophagy overload in response to glucolipotoxicity. Autophagy. 2023:1-20. DOI: 10.1080/15548627.2023.2200625 Search in Google Scholar

Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck I. Selective glucocorticoid receptor modulation: New directions with nonsteroidal scaffolds. Pharmacol Therap. 2015;152:28-41. DOI: 10.1016/j.pharmthera.2015.05.001 Search in Google Scholar

Leonard M, Godson C, Brady H, Taylor C. Potentiation of glucocorticoid activity in hypoxia through induction of the glucocorticoid receptor. J Immunol. 2005;174(4):2250-7. DOI: 10.4049/jimmunol.174.4.2250 Search in Google Scholar

eISSN:
2284-5623
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology