Cite

1. Wolff D, Nee S, Hickey NS, Marschollek M. Risk factors for Covid-19 severity and fatality: a structured literature review. Infection. 2021;49(1):15-28. DOI: 10.1007/s15010-020-01509-1Search in Google Scholar

2. Myrstad M, Ihle-Hansen H, Tveita AA, Andersen EL, Nygård S, Tveit A, et al. National Early Warning Score 2 (NEWS2) on admission predicts severe disease and in-hospital mortality from Covid-19 - a prospective cohort study. Scand J Trauma Resusc Emerg Med. 2020;28(1):66. DOI: 10.1186/s13049-020-00764-3Search in Google Scholar

3. Guarino M, Perna B, Remelli F, Cuoghi F, Cesaro AE, Spampinato MD, et al. A New Early Predictor of Fatal Outcome for COVID-19 in an Italian Emergency Department: The Modified Quick-SOFA. Microorganisms. 2022;10(4):806. DOI: 10.3390/microorganisms10040806Search in Google Scholar

4. Podgorelec V, Kokol P, Stiglic B, Rozman I. Decision Trees: An Overview and Their Use in Medicine. J Med Syst. 2002;26(5):445-63. DOI: 10.1023/A:1016409317640Search in Google Scholar

5. Karthikeyan A, Garg A, Vinod PK, Priyakumar UD. Machine Learning Based Clinical Decision Support System for Early COVID-19 Mortality Prediction. Front Public Heal. 2021;9:626697. DOI: 10.3389/fpubh.2021.626697Search in Google Scholar

6. Wang K, Zuo P, Liu Y, Zhang M, Zhao X, Xie S, et al. Clinical and laboratory predictors of in-hospital mortality in patients with COVID-19: a cohort study in Wuhan, China. Clin Infect Dis. 2020;71(16):2079-88. DOI: 10.1093/cid/ciaa538Search in Google Scholar

7. McCormik K, Salcedo J. Peck J. WA. SPSS Statistics for Data Analysis and visualization. Indianapolis, IN: John Wiley & Sons, Inc. 2017:355-92.Search in Google Scholar

8. Hsu M. Structural Equation Modeling with IBM SPSS Amos. In: IBM Corporation, editor. IBM Software Business Analytics. Somers NY; 2010.Search in Google Scholar

9. Barclay D., Higgins C, Thompson R. The Partial Least Squares (PLS) Approach to Causal Modeling: Personal Computer Adoption and Use as an Illustration. Technol Stud. 1995;2(2):285-309.Search in Google Scholar

10. Hair, Jr., J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M., Danks, N.P., Ray, S. Partial least squares structural equation modeling (PLS-SEM) using R - a workbook, SPRINGER, 2021. DOI: 10.1007/978-3-030-80519-7Search in Google Scholar

11. Khabaza T. 9 Laws of Data Mining [Internet]. 2010 [cited 2023 Apr 17]. Available from: http://khabaza.codimension.net/index_files/9laws.htmSearch in Google Scholar

12. Jöreskog KG, Wold H. The ML and PLS technique for modeling eith latent variables: historical and comparative aspects. In Wold H, Jöreskog KG (Eds.) Systems under indirect observations, part I. Amsterdam, North - Holland. 1982:263-270.Search in Google Scholar

13. Prozan L, Shusterman E, Ablin J, Mitelpunkt A, Weiss-Meilik A, Adler A, et al. Prognostic value of neutrophil-to-lymphocyte ratio in COVID-19 compared with Influenza and respiratory syncytial virus infection. Sci Rep. 2021;11(1):21519. DOI: 10.1038/s41598-021-00927-xSearch in Google Scholar

14. Cîțu C, Gorun F, Motoc A, Sas I, Gorun OM, Burlea B, et al. The Predictive Role of NLR, d-NLR, MLR, and SIRI in COVID-19 Mortality. Diagnostics. 2022;12(1):122. DOI: 10.3390/diagnostics12010122Search in Google Scholar

15. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect. 2020;81(1):e6-12. DOI: 10.1016/j.jinf.2020.04.002Search in Google Scholar

16. Önal U, Gülhan M, Demirci N, Özden A, Erol N, Işık S, et al. Prognostic value of neutrophile-to-lymphocyte ratio (NLR) and lactate dehydrogenase (LDH) levels for geriatric patients with COVID-19. BMC Geriatr. 2022;22(1):1-6. DOI: 10.1186/s12877-022-03059-7Search in Google Scholar

17. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8. DOI: 10.1093/cid/ciaa248Search in Google Scholar

18. Pál K, Molnar AA, Hu.anu A, Szederjesi J, Branea I, Timár Á, et al. Inflammatory Biomarkers Associated with In-Hospital Mortality in Critical COVID-19 Patients. Int J Mol Sci. 2022;23(18):10423. DOI: 10.3390/ijms231810423Search in Google Scholar

19. Guan X, Zhang B, Fu M, Li M, Yuan X, Zhu Y, et al. Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: results from a retrospective cohort study. Ann Med. 2021;53(1):257-66. DOI: 10.1080/07853890.2020.1868564Search in Google Scholar

20. Andrijevic I, Matijasevic J, Andrijevic L, Kovacevic T, Zaric B. Interleukin-6 and procalcitonin as biomarkers in mortality prediction of hospitalized patients with community acquired pneumonia. Ann Thorac Med. 2014;9(3):162-7. DOI: 10.4103/1817-1737.134072Search in Google Scholar

21. Jones SA, Hunter CA. Is IL-6 a key cytokine target for therapy in COVID-19? Nat Rev Immunol. 2021;21(6):337-9. DOI: 10.1038/s41577-021-00553-8Search in Google Scholar

22. Rose-John S, Winthrop K, Calabrese L. The role of IL-6 in host defence against infections: immunobiology and clinical implications. Nat Rev Rheumatol. 2017;13:399-409. DOI: 10.1038/nrrheum.2017.83Search in Google Scholar

23. Guirao JJ, Cabrera CM, Jiménez N, Rincón L, Urra JM. High serum IL-6 values increase the risk of mortality and the severity of pneumonia in patients diagnosed with COVID-19. Mol Immunol. 2020;128:64-8. DOI: 10.1016/j.molimm.2020.10.006Search in Google Scholar

24. Hojyo S, Uchida M, Tanaka K, Hasebe R, Tanaka Y, Murakami M, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen. 2020;40:37. DOI: 10.1186/s41232-020-00146-3Search in Google Scholar

25. Hirano T, Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020;52(5):731-3. DOI: 10.1016/j.immuni.2020.04.003Search in Google Scholar

26. Rodrigues PRS, Alrubayyi A, Pring E, Bart VMT, Jones R, Coveney C, et al. Innate immunology in COVID-19-a living review. Part II: dysregulated inflammation drives immunopathology. Oxford Open Immunol. 2020;1(1):iqaa005. DOI: 10.1093/oxfimm/iqaa005Search in Google Scholar

27. Malik P, Patel U, Mehta D, Patel N, Kelkar R, Akrmah M, et al. Biomarkers and outcomes of COVID-19 hospitalisations: systematic review and meta-analysis. BMJ Evidence-Based Med. 2021;26(3):107-8. DOI: 10.1136/bmjebm-2020-111536Search in Google Scholar

28. Kodavoor Vadiraj P, Thareja S, Raman N, Karantha SC, Jayaraman M, Vardhan V. Does Raised Transaminases Predict Severity and Mortality in Patients with COVID 19? J Clin Exp Hepatol. 2022;12(4):1114-23. DOI: 10.1016/j.jceh.2022.01.004Search in Google Scholar

29. Pozzobon FM, Perazzo H, Bozza FA, Rodrigues RS, de Mello Perez R, Chindamo MC. Liver injury predicts overall mortality in severe COVID-19: a prospective multicenter study in Brazil. Hepatol Int. 2021;15(2):493-501. DOI: 10.1007/s12072-021-10141-6Search in Google Scholar

30. Parohan M, Yaghoubi S, Seraji A. Liver injury is associated with severe coronavirus disease 2019 (COVID-19) infection: A systematic review and meta-analysis of retrospective studies. Hepatol Res. 2020;50(8):924-35. DOI: 10.1111/hepr.13510Search in Google Scholar

31. Rothschild MA, Oratz M, Schreiber SS. Serum albumin. Hepatology. 1988;8(2):385-401. DOI: 10.1002/hep.1840080234Search in Google Scholar

32. Huang J, Cheng A, Kumar R, Fang Y, Chen G, Zhu Y, et al. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J Med Virol. 2020;92(10):2152. DOI: 10.1002/jmv.26003Search in Google Scholar

33. Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G, et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern Med. 2020;180(10):1345-55. DOI: 10.1001/jamainternmed.2020.3539Search in Google Scholar

34. Leulseged TW, Hassen IS, Ayele BT, Tsegay YG, Abebe DS, Edo MG, et al. Laboratory biomarkers of COVID-19 disease severity and outcome: Findings from a developing country. PLoS One. 2021;16(3): e0246087. DOI: 10.1371/journal.pone.0246087Search in Google Scholar

35. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. DOI: 10.1001/jama.2020.1585Search in Google Scholar

36. Nadim MK, Forni LG, Mehta RL, Connor MJ, Liu KD, Ostermann M, et al. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol. 2020;16(12):747-764. DOI: 10.1038/s41581-020-00356-5Search in Google Scholar

37. Fabrizi F, Alfieri CM, Cerutti R, Lunghi G, Messa P. COVID-19 and Acute Kidney Injury: A Systematic Review and Meta-Analysis. Pathogens. 2020;9(12):1-16. DOI: 10.3390/pathogens9121052Search in Google Scholar

38. Yildirim C, Ozger H S, Yasar E, Tombul N, Gulbahar O, et al. Early predictors of acute kidney injury in COVID-19 patients. Nephrology (Carlton). 2021;26(6), 513-521. DOI: 10.1111/nep.13856Search in Google Scholar

39. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829-38. DOI: 10.1016/j.kint.2020.03.005Search in Google Scholar

40. Ley C, Martin RK, Pareek A, Groll A, Seil R, Tischer T. Machine learning and conventional statistics: making sense of the differences. Knee Surgery, Sport Traumatol Arthrosc. 2022;30(3):753-7. DOI: 10.1007/s00167-022-06896-6Search in Google Scholar

41. Rakotomalala R. Arbres de Décision. Rev Modul. 2005;33:163-87.Search in Google Scholar

42. Cole DA, Preacher KJ. Manifest variable path analysis: Potentially serious and misleading consequences due to uncorrected measurement error. Psychol Methods. 2014;19(2):300-15. DOI: 10.1037/a0033805Search in Google Scholar

eISSN:
2284-5623
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology