Open Access

Values of PCT and STREM-1 combined with clinical pulmonary infection score for the prognostic evaluation of elderly patients with ventilator-associated pneumonia


Cite

1. Wood GC, Jonap BL, Maish III GO, Magnotti LJ, Swanson JM, Boucher BA, et al. Treatment of Achromobacter Ventilator-Associated Pneumonia in Critically Ill Trauma Patients. Ann Pharmacother. 2018;52:120-5. DOI: 10.1177/106002801773083810.1177/106002801773083828906137Search in Google Scholar

2. Re MF, Rocchetti NS, Settecase CJ, Bagilet DH. Diagnostic value of procalcitonin in ventilator-associated pneumonia. Med Clin. 2019;152:216-21. DOI: 10.1016/j.medcle.2019.01.01110.1016/j.medcle.2019.01.011Search in Google Scholar

3. Li C, Zhu L, Gong X, Xu Z, Liu Y, Zhang M, et al. Soluble triggering receptor expressed on myeloid cells 1 as a useful biomarker for diagnosing ventilator associated pneumonia after congenital cardiac surgery in children. Exp Ther Med. 2019;17:147-52. DOI: 10.3892/etm.2018.690510.3892/etm.2018.6905630741330651775Search in Google Scholar

4. Iosifidis E, Pitsava G, Roilides E. Ventilator-associated pneumonia in neonates and children: a systematic analysis of diagnostic methods and prevention. Future Microbiol. 2018;13:1431-46. DOI: 10.2217/fmb-2018-010810.2217/fmb-2018-010830256161Search in Google Scholar

5. Fu CM, Chang CH, Fan PC, Tsai MH, Lin SM, Kao KC, et al. Prognosis of critically ill cirrhotic versus non-cirrhotic patients: a comprehensive score-matched study. BMC Anesthesiol. 2014;14:123. DOI: 10.1186/1471-2253-14-12310.1186/1471-2253-14-123428957725580088Search in Google Scholar

6. Intensive Care Medicine Branch of Chinese Medical Association. [Guidelines for the Diagnosis, Prevention and Treatment of Ventilator-Associated Pneumonia (2013)]. Chin J Intern Med. 2013;52:524-43.Search in Google Scholar

7. Gaudet A, Martin-Loeches I, Povoa P, Rodriguez A, Salluh J, Duhamel A, et al. Accuracy of the clinical pulmonary infection score to differentiate ventilator-associated tracheobronchitis from ventilator-associated pneumonia. Ann Intens Care. 2020;10:101. DOI: 10.1186/s13613-020-00721-410.1186/s13613-020-00721-4739688732748025Search in Google Scholar

8. Bos LD, Kalil AC. Changes in lung microbiome do not explain the development of ventilator-associated pneumonia. Intens Care Med. 2019;45:1133-5. DOI: 10.1007/s00134-019-05691-110.1007/s00134-019-05691-131317208Search in Google Scholar

9. De Neef M, Bakker L, Dijkstra S, Raymakers-Janssen P, Vileito A, Ista E. Effectiveness of a Ventilator Care Bundle to Prevent Ventilator-Associated Pneumonia at the PICU: A Systematic Review and Meta-Analysis. Pediatr Crit Care Med. 2019;20:474-80. DOI: 10.1097/PCC.000000000000186210.1097/PCC.000000000000186231058785Search in Google Scholar

10. Wang Q, Hou D, Wang J, An K, Han C, Wang C. Procalcitonin-guided antibiotic discontinuation in ventilator-associated pneumonia: a prospective observational study. Infect Drug Resist. 2019;12:815-24. DOI: 10.2147/IDR.S19085910.2147/IDR.S190859649787131114263Search in Google Scholar

11. Beye F, Vigneron C, Dargent A, Prin S, Andreu P, Large A, et al. Adhering to the procalcitonin algorithm allows antibiotic therapy to be shortened in patients with ventilator-associated pneumonia. J Crit Care. 2019;53:125-31. DOI: 10.1016/j.jcrc.2019.05.02210.1016/j.jcrc.2019.05.02231228763Search in Google Scholar

12. Wongsurakiat P, Tulatamakit S. Clinical pulmonary infection score and a spot serum procalcitonin level to guide discontinuation of antibiotics in ventilator-associated pneumonia: a study in a single institution with high prevalence of nonfermentative gram-negative bacilli infection. Ther Adv Respir Dis. 2018;12:1-13. DOI: 10.1177/175346661876013410.1177/1753466618760134594166529506460Search in Google Scholar

13. Coelho L, Rabello L, Salluh J, Martin-Loeches I, Rodriguez A, Nseir S, et al. C-reactive protein and procalcitonin profile in ventilator-associated lower respiratory infections. J Crit Care. 2018;48:385-9. DOI: 10.1016/j.jcrc.2018.09.03610.1016/j.jcrc.2018.09.03630308469Search in Google Scholar

14. Edel Y, Kliminski V, Pokroy-Shapira E, Oren S, Lazar AD, Basson YP, et al. Elevated plasma level of soluble triggering receptor expressed on myeloid cells-1 is associated with inflammation activity and is a potential biomarker of thrombosis in primary antiphospholipid syndrome. Arthritis Res Ther. 2019;21:1-10. DOI: 10.1186/s13075-018-1779-510.1186/s13075-018-1779-5632366930616644Search in Google Scholar

15. Moralesortiz J, Rondina MT, Brown SM, Grissom C, Washington AV. High Levels of Soluble Triggering Receptor Expressed on Myeloid Cells-Like Transcript (TLT)-1 Are Associated with Acute Respiratory Distress Syndrome. Clin Appl Thromb Hemost. 2018;24:1122-7. DOI: 10.1177/107602961877414910.1177/1076029618774149621975729758998Search in Google Scholar

16. Van Oort PM, Bos LD, Povoa P, Ramirez P, Torres A, Artigas A, et al. Soluble urokinase plasminogen activator receptor for the prediction of ventilator-associated pneumonia. ERJ Open Res. 2019;5(1):00212-2018. DOI: 10.1183/23120541.00212-201810.1183/23120541.00212-2018643175230918897Search in Google Scholar

17. Chen C, Yan M, Hu C, Lv X, Zhang H, Chen S. Diagnostic efficacy of serum procalcitonin, C-reactive protein concentration and clinical pulmonary infection score in Ventilator-Associated Pneumonia. Med Sci. 2018;34:26-32. DOI: 10.1051/medsci/201834f10510.1051/medsci/201834f10530403171Search in Google Scholar

18. Elgazzar AE, Hosny H, Elkhateeb TH. Procalcitonin and clinical pulmonary infection score as predictors of stroke-associated pneumonia: a prospective observational single-center study. Egypt J Chest Dis Tuberc. 2017;2090:9950.Search in Google Scholar

eISSN:
2284-5623
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology