1. bookVolume 26 (2018): Issue 2 (April 2018)
Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Could fibrinogen and hsCRP be useful for assessing personal risk in workers exposed to a mixture of ultrafine particles and organic solvents?

Published Online: 17 May 2018
Volume & Issue: Volume 26 (2018) - Issue 2 (April 2018)
Page range: 177 - 187
Received: 21 Nov 2017
Accepted: 04 Mar 2018
Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year

Purpose: Our study focuses on elucidating if two common inflammatory biomarkers, easily performed in any laboratory - high-sensitivity C-reactive protein (hsCRP), as well as fibrinogen - could be used to assess the personal health risk of workers exposed to a complex occupational exposure to ultrafine particles (UFP) and a mixture of organic solvents. Methods: To assess the inflammatory response on the body, laboratory determinations were performed by testing the serum levels of hsCRP and fibrinogen, in exposed and unexposed groups. Results: There are no statistically significant differences for hsCRPs (p-0.25), medians were similar in groups. The mean values of fibrinogen in the three groups were: in the workers group (1st group): 346.2 mg/dl, in the office staff group (2nd group): 328.7 mg/dl, and in the control group (3rd group): 284.8 mg/dl, with significant differences between 1st group vs 3rd group and between 2nd group vs 3rd group (p-0.002). UFP levels differ between the groups, as follows: 1st group were exposed to the highest levels, ranging from 48349 to 3404000 part/cm3; 2nd group, ranging from 17371 to 40595 part/cm3; and 3rd group, ranging from 213 to 16255 part/cm3. Conclusions: Our study demonstrates that fibrinogen is a useful inflammatory biomarker for exposure to a mixture of UFP and organic solvents. On the other hand, hsCRP is not a useful inflammatory biomarker in occupational exposure to UFP and organic solvents. Further studies are needed to demonstrate the extent to which fibrinogen is more or less influenced by organic solvents or UFP alone.


1. Bekker C, Brouwer DH, Tielemans E, Pronk A. Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure. Ann Occup Hyg.2013;57(3):314-27.Search in Google Scholar

2. Bahadar H. Mostafalou S, Abdollahi M. Current understandings and perspectives on non-Cancer health effects of benzene: A global concern. Toxicol Appl Pharmacol. 2014;276(2):83-94. DOI: 10.1016/j.taap.2014.02.01210.1016/j.taap.2014.02.01224589379Open DOISearch in Google Scholar

3. Baker EL. A Review of Recent Research on Health Effects of Human Occupational Exposure to Organic Solvents. J Occup Environ Med. 1994;36(10):1079-92. DOI: 10.1097/00043764-199410000-0001010.1097/00043764-199410000-000107830166Search in Google Scholar

4. Mohammadi S, Mehrparvar A, Labbafinejad Y, Attarchi MS. The effect of exposure to a mixture of organic solvents on liver enzymes in an auto manufacturing plant. J Public Health. 2010;18(6):553-557. DOI: 10.1007/s10389-010-0340-z10.1007/s10389-010-0340-zOpen DOISearch in Google Scholar

5. Mohammadi S, Labbafinejad Y, Attarchi M. Combined Effects of Ototoxic Solvents and Noise on Hearing in Automobile Plant Workers in Iran. Arh Hig Rada Toksikol. 2010;61(3):267-274. DOI: 10.2478/10004-1254-61-2010-201310.2478/10004-1254-61-2010-201320860967Open DOISearch in Google Scholar

6. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118-126. DOI: 10.4103/0973-7847.7090210.4103/0973-7847.70902324991122228951Open DOISearch in Google Scholar

7. Hesterberg TW, Long CM, Lapin CA, Hamade AK, Valberg PA. Diesel exhaust particulate (DEP) and nanoparticle exposures: what do DEP human clinical studies tell us about potential human health hazards of nanoparticles? Inhal Toxicol. 2010;22:679-94. DOI: 10.3109/0895837100375882310.3109/0895837100375882320462394Open DOISearch in Google Scholar

8. Hubbs AF, Mercer RR, Benkovic SA, Harkema J, Sriram K, Schwegler-Berry D, et al. Nanotoxicology - a pathologist’s perspective. Toxicol Pathol. 2011;39:301-24. DOI: 10.1177/019262331039070510.1177/019262331039070521422259Search in Google Scholar

9. Hui-Yi Liao, Yu-Teh Chung, Ching-Huang Lai, Shu-Li Wang, Hung-Che Chiang et al. Six-month follow-up study of health markers of nanomaterials among. Nanotoxicology. 2013;8:100-10. DOI: 10.3109/17435390.2013.85879310.3109/17435390.2013.85879324295335Search in Google Scholar

10. Liou S-H, Tsai CSJ, Pelclova D, Schubauer-Berigan MK, Schulte PA. Assessing the first wave of epidemiological studies of nanomaterial workers. J Nanopart Res Journal. 2015;17(10):413. DOI: 10.1007/s11051-015-3219-710.1007/s11051-015-3219-7466654226635494Search in Google Scholar

11. Vogel CFA, Sciullo E, Wong P, Kuzmicky P, Kado N, Matsumura F. Induction of proinflammatory cytokines and C-reactive protein in human macrophage cell line U937 exposed to air pollution particulates. Environ Health Perspect. 2005;113:1536-41. DOI: 10.1289/ehp.809410.1289/ehp.8094131091516263508Open DOISearch in Google Scholar

12. Li Y, Rittenhouse-Olson K, L.Scheider W, Mu L. Effect of particulate matter air pollution on C-reactive protein: a review of epidemiologic studies, Rev Environ Health. 2012;27(2-3):133-49. DOI: 10.1515/reveh-2012-001210.1515/reveh-2012-0012355917923023922Open DOISearch in Google Scholar

13. Delfino RJ, Staimer N, Tjoa T, Polidori A, Arhami M, Gillen DL, et al. Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ. Health Perspect. 2008;116:898-906. DOI: 10.1289/ehp.1118910.1289/ehp.11189245315818629312Open DOISearch in Google Scholar

14. Ohlson CG, Berg P, Bryngelsson IL, Elihn K, Ngo Y, Westberg H, et al. Inflammatory markers and exposure to occupational air pollutants. Inhal. Toxicol. 2010;22:1083-1090. DOI: 10.3109/08958378.2010.52035610.3109/08958378.2010.52035621029032Open DOISearch in Google Scholar

15. Niwa Y, Hiura Y, Sawamura H, Iwai N, Inhalation exposure to carbon black induces inflammatory response in rats. Circ. J. 2008;72:144-9. DOI: 10.1253/circj.72.14410.1253/circj.72.14418159116Open DOISearch in Google Scholar

16. Peters A, Greven S, Heid I. M, Baldari F, Breitner S, Bellander T. et al. Fibrinogen genes modify the fibrinogen response to ambient particulate matter. Am J Respir Crit Care Med. 2009;179:484-91. DOI: 10.1164/rccm.200805-751OC10.1164/rccm.200805-751OC19136375Open DOISearch in Google Scholar

17. Marra J, Voetz M, Kiesling HJ. Monitor for detecting and assessing exposure to airborne nanoparticles. J Nanopart Res. 2010;12:21-37. DOI: 10.1007/s11051-009-9695-x10.1007/s11051-009-9695-xOpen DOISearch in Google Scholar

18. Creta M, Poels K, Thoelen L, A Method to Quantitatively Assess Dermal Exposure to Volatile Organic Compounds, Annals of Work Exposures and Health. 2017;61(8):975-85. DOI: 10.1093/annweh/wxx05410.1093/annweh/wxx05429028249Search in Google Scholar

19. Clauss A. Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol. 1957;17:237-46. DOI: 10.1159/00020523410.1159/00020523413434757Open DOISearch in Google Scholar

20. Donaldson K, Stone V, Seaton A, MacNee W. Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect. 2001;109(Suppl 4):523-27. DOI: 10.1289/ehp.01109s452310.1289/ehp.01109s4523124057511544157Open DOISearch in Google Scholar

21. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11-45. DOI: 10.1186/1743-8977-3-1110.1186/1743-8977-3-11158424816907977Open DOISearch in Google Scholar

22. Brouwer D. Exposure to manufactured nanoparticles in different workplaces. Toxicology. 2010;269:120-7. DOI: 10.1016/j.tox.2009.11.01710.1016/j.tox.2009.11.017Open DOISearch in Google Scholar

23. Frampton MW. Does inhalation of ultrafine particles cause pulmonary vascular effects in humans? Inhal Toxicol. 2007;19:75-9. DOI: 10.1080/0895837070149507110.1080/08958370701495071Open DOISearch in Google Scholar

24. Quan C, Sun Q, Lippmann M, Chen LC. Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction. Inhal Toxicol. 2010;22:738-53. DOI: 10.3109/0895837100372805710.3109/08958371003728057Open DOISearch in Google Scholar

25. Peters A, Breitner S, Cyrys J, Stolzel M, Pitz M, Wolke G, et al. The influence of improved air quality on mortality risks in Erfurt, Germany. Res Rep Health Eff Inst. 2009;137:5-77.Search in Google Scholar

26. Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J. 2009;34:559-67. DOI: 10.1183/09031936.0017830810.1183/09031936.00178308Open DOISearch in Google Scholar

27. Pepys MB, Hirschfield GM. C-reactive protein: A critical update. J Clin Investig. 2003;111:1805-12. DOI: 10.1172/JCI20031892110.1172/JCI200318921Open DOISearch in Google Scholar

28. Simion M, Ruta Lavinia L, Kleps I, Miu M. Study of HS-CRP immobilization on nanostructured silicon. Materials Science and Engineering B, Solid-State Materials for Advanced Technology. 2010;169(1-3):67-72. DOI: 10.1016/j.mseb.2009.12.05010.1016/j.mseb.2009.12.050Open DOISearch in Google Scholar

29. Zhang YX, Cliff WJ, Schoefl GI, Higgins G. Coronary C-reactive protein distribution: Its relation to development of atherosclerosis. Atherosclerosis. 1999;145:375-9. DOI: 10.1016/S0021-9150(99)00105-710.1016/S0021-9150(99)00105-7Open DOISearch in Google Scholar

30. McBride JD., Cooper MA. A high sensitivity assay for the inflammatory marker C-Reactive protein employing acoustic biosensing. Nanobiotechnology. 2008;6:1-8. DOI: 10.1186/1477-3155-6-510.1186/1477-3155-6-5240860918445267Open DOISearch in Google Scholar

31. Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res. 2013;56(1):131-42. DOI: 10.1007/s12026-013-8384-010.1007/s12026-013-8384-023371836Open DOISearch in Google Scholar

32. Pilar C, Rosana S.V, Jonathan P, González F. A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance, Biosens Bioelectron. 2015;74:376-83. DOI: 10.1016/j.bios.2015.05.07010.1016/j.bios.2015.05.07026162328Open DOISearch in Google Scholar

33. Fischbach F. Blood Studies. Hematology and Coagulation, A Manual of Laboratory and Diagnostic Test 8th ed, Philadelphia, 2009;177-8.Search in Google Scholar

34. Bergamaschi E. Human Biomonitoring of Engineered Nanoparticles: An Appraisal of Critical Issues and Potential Biomarkers. J Nanomater. 2012;2012:1-12. DOI: 10.1155/2012/56412110.1155/2012/564121Open DOISearch in Google Scholar

35. Liou SH, Tsou TC, Wang SL, Li LA, Chiang HC, Li WF, et al. Epidemiological study of health hazards among workers handling engineered nanomaterials. J Nanopart Res Journal. 2012;14:878-82. DOI: 10.1007/s11051-012-0878-510.1007/s11051-012-0878-5Open DOISearch in Google Scholar

36. Mills NL, Tornqvist H, Robinson SD, Gonzalez M, Darnley K, MacNeeW, et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation. 2005;112:3930-6. DOI: 10.1161/CIRCULATIONAHA.105.58896210.1161/CIRCULATIONAHA.105.58896216365212Open DOISearch in Google Scholar

37. Lucking AJ, Lundback M, Mills NL, Faratian D, Barath SL, Pourazar J, et al. Diesel exhaust inhalation increases thrombus formation in man. Eur Heart J. 2008;29:3043-51. DOI: 10.1093/eurheartj/ehn46410.1093/eurheartj/ehn46418952612Open DOISearch in Google Scholar

38. Araujo JA, Nel AE. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Part Fibre Toxicol. 2009;6:24-42. DOI: 10.1186/1743-8977-6-2410.1186/1743-8977-6-24276185019761620Open DOISearch in Google Scholar

39. Paik SY, Zalk DM, Swuste P. Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg. 2008;52:419-28.Search in Google Scholar

40. Sutton RH, Hobman B. The value of plasma fibrinogen estimations in cattle: A comparison with total leucocyte and neutrophil counts. N. Z. Vet J. 1975;23(3):21-27 DOI: 10.1080/00480169.1975.3418610.1080/00480169.1975.341861058358Open DOISearch in Google Scholar

41. Pelclova D, Fenclova Z, Syslova K, Vlckova S, Lebedova J, Pecha O. Oxidative stress markers in exhaled breath condensate in lung fibroses are not significantly affected by systemic diseases. Ind Health. 2011;49(6):746-54. DOI: 10.2486/indhealth.MS123710.2486/indhealth.MS123722020018Open DOISearch in Google Scholar

42. Pelclova D, Navratil T, Fenclova Z, Vlckova S, Kupka K, Urban P, et al. Increased oxidative/nitrosative stress markers measured non- invasively in patients with high 2,3,7,8-tetrachloro-dibenzo-p-dioxin plasma level. Neuro Endocrinol Lett. 2011;32Suppl 1:71-6.Search in Google Scholar

43. Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Syslova K. et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J Breath Res. 2016;10(1):016004. DOI: 10.1088/1752-7155/10/1/01600410.1088/1752-7155/10/1/01600426828137Open DOISearch in Google Scholar

44. Fogarasi E, Croitoru MD, Fülöp I, Nemes-Nagy E, Tripon RG, Simon-Szabo Z, et al. Malondialdehyde levels can be measured in biological samples by using a fast HPLC method with visible detection. Rev Romana Med Lab. 2016;24(3):319-26. DOI: 10.1515/rrlm- 2016-002910.1515/rrlm-2016-0029Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo