Open Access

The Role of a Behavioural Model for the Virtual Commissioning of Robotic Manufacturing Systems


Cite

[1] LIU, M., FANG, S., DONG, H., XU, C. 2021. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst., 58, 346. Search in Google Scholar

[2] LECHLER, T., FISCHER, E., METZNER, M., MAYR, A., FRANKE, J. 2019. Virtual Commissioning – Scientific review and exploratory use cases in advanced production systems. In: Procedia CIRP, 81, 1125. Search in Google Scholar

[3] DE MELO, M.S.P., DA SILVA NETO, J.G., DA SILVA, P.J.L., TEIXEIRA, J.M.X.N., TEICHRIEB, V. 2019. Analysis and comparison of robotics 3D simulators. In: Proc. - 2019 21st Symp. Virtual Augment. Reality, SVR 2019, 242. Search in Google Scholar

[4] ŽLAJPAH, L. 2008. Simulation in robotics. Math. Comput. Simul., 79(4), 879. Search in Google Scholar

[5] MITSI, S., BOUZAKIS, K.D., MANSOUR, G., SAGRIS, D., MALIARIS, G. 2005. Off-line programming of an industrial robot for manufacturing. Int. J. Adv. Manuf. Technol. 26(3), 262. Search in Google Scholar

[6] LAI, Z., XIONG, R., WU, H., GUAN, Y. 2018. Integration of Visual Information and Robot Offline Programming System for Improving Automatic Deburring Process 2018. In: IEEE Int. Conf. Robot. Biomimetics, ROBIO 2018, 1132. Search in Google Scholar

[7] PAN, Z., POLDEN, J., LARKIN, N., VAN DUIN, S., NORRISH, J. 2012. Recent progress on programming methods for industrial robots. Robot. Comput. Integr. Manuf., 28(2), 87. Search in Google Scholar

[8] KRAETZSCHMAR, G. et al. An overview about simulation and emulation in robotics Related papers MM-ulat or: Towards a Common Evaluat ion Plat form for Mixed Mode Environment s An Overview about Simulation and Emulation in Robotics. Search in Google Scholar

[9] RUBIO, F., LLOPIS-ALBERT, C., VALERO, F., SUÑER, J.L. 2015. Assembly line productivity assessment by comparing optimization-simulation algorithms of trajectory planning for industrial robots. Math. Probl. Eng. 2015.10.1155/2015/931048 Search in Google Scholar

[10] SILVA, R., ROCHA, L.F., RELVAS, P., COSTA, P., SILVA, M.F. 2018. Offline Programming of Collision Free Trajectories for Palletizing Robots. Adv. Intell. Syst. Comput. 694, 680. Search in Google Scholar

[11] FLORES, A.M., BAUER, P., REINHART, G. 2019. Concept of a learning knowledge-based system for programming industrial robots. In: Procedia CIRP, 79, 626. Search in Google Scholar

[12] GUHL, J., NIKOLEIZIG, S., HEIMANN, O., HÜGLE, J., KRÜGER, J. 2019. Combining the Advantages of On- and Offline Industrial Robot Programming. In: IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA 2019, 1567. Search in Google Scholar

[13] KORTENKAMP, D., SIMMONS, R., BRUGALI, D. 2016. Robotic systems architectures and programming. Springer Handb. Robot. 12(1), 283. Search in Google Scholar

[14] XIAO, X. et al. 2020. Virtual simulation of communication between KUKA robot and PLC. J. Phys. Conf. Ser. 1634(1), 012065. Search in Google Scholar

[15] KAZEMI, S., KHARRATI, H. 2017. Visual Processing and Classification of items on Moving Conveyor with Pick and Place Robot using PLC. Intell. Ind. Syst. 2017, 31, 3(1), 15. Search in Google Scholar

[16] BELOIU, R. 2021. Virtual Commissioning of Wheel Robot Processing. In: 12th Int. Symp. Adv. Top. Electr. Eng. ATEE 2021.10.1109/ATEE52255.2021.9425077 Search in Google Scholar

[17] LEE, C.G., PARK, S.C. 2014. Survey on the virtual commissioning of manufacturing systems. J. Comput. Des. Eng., 1(3), 213. Search in Google Scholar

[18] SCHEIFELE, C., VERL, A., RIEDEL, O. 2019. Real-time co-simulation for the virtual commissioning of production systems. In: Procedia CIRP, 79, 397. Search in Google Scholar

[19] RUŽAROVSKÝ, R., HOLUBEK, R., DELGADO SOBRINO, D., JANÍČEK, M. 2018. The Simulation of Conveyor Control System Using the Virtual Commissioning and Virtual Reality. Adv. Sci. Technol. Res. J., 12(4), 164. Search in Google Scholar

[20] RUŽAROVSKÝ, R., HOLUBEK, R., SOBRINO, D.R.D., VELÍŠEK, K. 2019. A case study of robotic simulations using virtual commissioning supported by the use of virtual reality. In: MATEC Web Conf., 299, 02006. Search in Google Scholar

[21] SKÝPALA, R., RUŽAROVSKÝ, R. 2021. Virtual commissioning of automated manufacturing systems — Quality-handling station case study. In: MATEC Web Conf., 343, 04002. Search in Google Scholar

[22] MORTENSEN, S.T., MADSEN, O. 2018. A Virtual Commissioning Learning Platform. In: Procedia Manuf., 23, 93. Search in Google Scholar

[23] SCHAMP, M., HOEDT, S., CLAEYS, A., AGHEZZAF, E.H., COTTYN, J. 2018. Impact of a virtual twin on commissioning time and quality. IFAC-PapersOnLine, 51, 11, 1047. Search in Google Scholar

[24] SUB, S. et al. 2016. Test methodology for virtual commissioning based on behaviour simulation of production systems. In: IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA 2016.10.1109/ETFA.2016.7733624 Search in Google Scholar

[25] EGUTI, C.C.A., TRABASSO, L.G., The virtual commissioning technology applied in the design process of a flexible automation system. J. Brazilian Soc. Mech. Sci. Eng, 40(8), 1.10.1007/s40430-018-1322-2 Search in Google Scholar

[26] ANDREI, A., NICOLESCU, A.F., PUPĂZĂ, C. 2021. PERSPECTIVES OF VIRTUAL COMMISSIONING USING ABB ROBOTSTUDIO AND SIMATIC ROBOT INTEGRATOR ENVIRONMENTS: A REVIEW. Proc. Manuf. Syst., 16(3), 117. Search in Google Scholar

[27] FERNÁNDEZ, I.A., EGUÍA, M.A., ECHEVERRÍA, L.E. 2019. Virtual commissioning of a robotic cell: An educational case study. In: IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, 820. Search in Google Scholar

[28] BRAZINA, J., VETISKA, J., STANEK, V., BRADAC, F., HOLUB, M. 2020. Virtual commissioning as part of the educational process. In: Proc. 2020 19th Int. Conf. Mechatronics - Mechatronika, ME 2020. Search in Google Scholar

eISSN:
1338-0532
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other