Cite

[1] V. P. ASTAKHOV. 2011. Viktor P. Astakhov, General Motors Business Unit of PSMi, USA, pp. 1–78, doi: 10.1533/9780857094940.1. Open DOISearch in Google Scholar

[2] N. L. G. BADADHE, A.M., BHAVE S.Y. 2012. Optimization of cutting parameters in boring operation. Adv. Mater. Res., 549, pp. 871–874. doi: 10.4028/http://www.scientific.net/AMR.549.871. Open DOISearch in Google Scholar

[3] H. SAGLAM. 2018. Design of a Three-Point Contacted Deep Hole Boring Head Üç Nokta Temaslı Derin Delik İşleme Başlığı Tasarımı Design of a Three-Point Contacted Deep Hole Boring Head, no. 19401081. Search in Google Scholar

[4] W. CHEN. 2000. Cutting forces and surface finish when machining medium hardness steel using CBN tools. Int. J. Mach. Tools Manuf., 40(3), pp.455–466. doi: 10.1016/S0890-6955(99)00011-5. Open DOISearch in Google Scholar

[5] S. M. DARWISH. 2000. The impact of the tool material and the cutting parameters on surface roughness of supermet 718 nickel superalloy, vol. 97, pp. 10–18. Search in Google Scholar

[6] J. D. THIELE, S. N. MELKOTE. 1999. Effect of cutting edge geometry and workpiece hardness on surface generation in the ® nish hard turning of AISI 52100 steel, vol. 94, pp. 216–226. Search in Google Scholar

[7] W. THOMAS, A. E. DINIZ, R. PEDERIVA, D. I. SUYAMA and M. V. De ALBUQUERQUE. 2019. A new type of impact damper with long overhangs in the internal turning of hardened materials. In: Procedia CIRP, vol. 82, pp. 255–260. doi: 10.1016/j.procir.2019.04.147. Open DOISearch in Google Scholar

[8] R. BONIFGO. 1994. Correlating tool wear, tool life, surface roughness and tool vibration in finish turning with coated carbide tools, vol. 173, pp. 137–144. Search in Google Scholar

[9] S. SABEV. 2021. Surface Roughness During Hole Boring of Aluminum with Anti-Vibration Boring Bar, vol. 3, pp. 314–318. Search in Google Scholar

[10] A. E. DINIZ, W. T. A. da SILVA, D. I. SUYAMA, R. PEDERIVA and M. V. ALBUQUERQUE. 2019. Evaluating the use of a new type of impact damper for internal turning tool bar in deep holes. J. Adv. Manuf. Technol., 101(5–8), pp. 1375–1390. doi: 10.1007/s00170-018-3039-x. Open DOISearch in Google Scholar

[11] SMITH, G.T. 2002. Industrial Metrology Surfaces and Roundness. London: Springer-Verlag, 1ª edição.10.1007/978-1-4471-3814-3_1 Search in Google Scholar

[12] SORTINO, M., TOTIS, G., PROSPERI, F. 2013. Modelling the dynamic properties of conventional and high-damping boring bars. Mechanical Systems and Signal Processing, 34, pp. 340-352. Search in Google Scholar

[13] ALTINTAS, Y. 2000. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations and CNC Design. USA: Cambridge University Press.10.1115/1.1399383 Search in Google Scholar

[14] HWANG, H. Y., KIM, J. K. 2003. Design and manufacture of a carbon fiber epoxy rotating boring bar. Composite Structures, 60(1), pp. 115-124. Search in Google Scholar

[15] DORIAN TOOLS. 2013. Deep Hole Boring Made Simple! 72 p. Search in Google Scholar

[16] SANDVIK Coromant. 2006. How to Reduce Vibration in Metal Cutting? Sandviken: Sandvik, 55 p. Search in Google Scholar

[17] KASSAB, S. Y., KHOSHNAW, Y. K. 2007. The Effect of Cutting Tool Vibration on Surface Roughness of Workpiece in Dry Turning Operation. Engineer & Technology, 25(7), pp. 879-889. Search in Google Scholar

[18] NESELI, S., YALCIN, G., YALDIZ, S. 2018. Surface Roughness Estimation for Turning Operation Based on Different Regression Models Using Vibration Signals. International Journal of Intelligent Systems and Applications in Engineering, 6(4), pp. 282-288. Search in Google Scholar

[19] Sandvik, 2017. Silent tool for turning: overcome vibrations in internal turning. 4 Feb. 2021 <https://tibp.blob.core.windows.net/coromant/a9d341b5-16cc-4f7c-8e60-2f927ea651fa.pdf?sv=2014-02-14&sr=b&sig=gd6yrZv9dnCJrT4OJpY7FuBrp2rINAFabaFTmn70nBo%3D&st=2021-02-04T15%3A08%3A41Z&se=2031-02-02T15%3A13%3A41Z&sp=r&rsct=application%2Fpdf&rscd=inline%3B%20filename%3DC-2920-40.pdf>. Search in Google Scholar

[20] ISO 3685:1993Tool-life testing with single-point turning tools. Search in Google Scholar

[21] DIN 4768, 1990-2005. Determination of values of surface roughness parameters Ra. Rz, Rmax using electrical contact (stylus) instruments Concepts and measuring conditions. Search in Google Scholar

[22] ISO 4288:1996 Geometrical Product Specifications (GPS) - Surface texture: Profile method - Rules and procedures for the assessment of surface texture - revised by ISO 21920-3:2021 Search in Google Scholar

[23] THOMAS W., FULOP Z., SZILÁGYI A., 2021. Passive Damping Techniques for Vibration Suppression in Boring Operation with Long Overhangs. In 3rd Vehicle and Automotive Engineering - VAE 2020. Miskolc, Hungary.10.1007/978-981-15-9529-5_22 Search in Google Scholar

eISSN:
1338-0532
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other