Cite

[1] EN 13501-6:2018. Fire classification of construction products and building elements - Part 6: Classification using data from reaction to fire tests on power, control and communication cables. Search in Google Scholar

[2] EN ISO 1716:2018. Reaction to fire tests for products - Determination of the gross heat of combustion (calorific value). Search in Google Scholar

[3] EN 50399:2011+A1:2016. Common test methods for cables under fire conditions. Heat release and smoke production measurement on cables during flame spread test. Test apparatus, procedures, results. Search in Google Scholar

[4] IEC 60332-1-2:2004+AMD1:2015 CSV. Tests on electric and optical fibre cables under fire conditions - Part 1-2: Test for vertical flame propagation for a single insulated wire or cable - Procedure for 1 kW pre-mixed flame. Search in Google Scholar

[5] STN 92 0203:2013/O1:2013. Požiarna bezpečnosť stavieb. Trvalá dodávka elektrickej energie pri požiari (Fire safety of buildings. Permanent electricity supply during fire). Search in Google Scholar

[6] MARTINKA, J., RANTUCH, P., SULOVÁ, J., MARTINKA, F. 2019. Assessing the fire risk of electrical cables using a cone calorimeter. Journal of Thermal Analysis and Calorimetry, 135(6), 3069-3083. ISSN 1388-6150. Search in Google Scholar

[7] ISO 5660-1:2015. Reaction to fire tests. Heat release, smoke production and mass loss rate - Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement). Search in Google Scholar

[8] PARK, J., W., LIM, O., K., YOU, W., J. 2020. Analysis on the Fire Growth Rate Index Considering of Scale Factor, Volume Fraction, and Ignition Heat Source for Polyethylene Foam Pipe Insulation. Energies, 13(14), 1-15, ISSN 1996-107.10.3390/en13143644 Search in Google Scholar

[9] WANG, D-Y., LIU, Y., WANG, Y-Z., ARTILES, C., P., HULL, T., R., PRICE, D. 2007. Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates. Polymer Degradation and Stability, 92, 1592-1598, ISSN 0141-3910. Search in Google Scholar

[10] WANG, Y., KANG, W., CHEN, C. et al. 2019. Combustion behaviour and dominant shrinkage mechanism of flexible polyurethane foam in the cone calorimeter test. Journal of Hazardous Materials, 365, 395-404, ISSN 0304-3894. Search in Google Scholar

[11] SVETLÍK, J., VEĽAS, A. 2017. Vehicle fire safety of the static traffic. In Transport Means - Proceedings of the International Conference. The 21st International Scientific Conference Transport Means: Lithuania, Kaunas, pp. 636-639. ISSN 1822-296X. Search in Google Scholar

[12] AN, W., WANG, T., LIANG, K., TANG, Y., WANG, Z. 2020. Effects of interlayer distance and cable spacing on flame characteristics and fire hazard of multilayer cables in utility tunnel. Case Studies in Thermal Engineering, 22, DOI: 10.1016/j.csite.2020.100784, ISSN 2214-157X.10.1016/j.csite.2020.100784 Search in Google Scholar

[13] XU, Q., JIN, C., MAJLINGOVA, A., ZACHAR, M., RESTAS, A. 2019. Evaluate the flammability of a PU foam with double-scale analysis. Journal of Thermal Analysis and Calorimetry, 135(6), 3329-3337, ISSN 1388-6150. Search in Google Scholar

[14] LI, J., HE, S., WANG, T., SHEN, Z., CHEN, X., ZHOU, F. 2021. A catalyst powder-based spraying approach for rapid and efficient removal of fire-generated CO: From laboratory to pilot scale. Journal of Hazardous Materials, 415, 1-12, ISSN 0304-3894. Search in Google Scholar

eISSN:
1338-0532
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other