Open Access

The cardiovascular complications of diabetes: a striking link through protein glycation


Cite

1. PUNTHAKEE Z., GOLDENBERG R., KATZ P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes. 2018; 42(1):S10–5.10.1016/j.jcjd.2017.10.00329650080Search in Google Scholar

2. International Diabetes Federation. IDF diabetes atlas. 9th ed. International Diabetes Federation, Brussels, Belgium, 2019.Search in Google Scholar

3. XU G., LIU B., SUN Y., DU Y., SNETSELAAR LG., HU FB., et al. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population-based study. BMJ. 2018; 362:k1497.10.1136/bmj.k1497612225330181166Search in Google Scholar

4. YANG P., FENG J., PENG Q., LIU X., FAN Z. Advanced glycation end products: potential mechanism and therapeutic target in cardiovascular complications under diabetes. Oxid Med Cell Longev. 2019; 2019:9570616.10.1155/2019/9570616692592831885827Search in Google Scholar

5. SCHALKWIJK CG., STEHOUWER C. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev. 2020; 100(1):407–61.10.1152/physrev.00001.201931539311Search in Google Scholar

6. GATEVA AT., ASSYOV YS., TSAKOVA AD., KAMENOV ZA. Serum AGEs and sRAGE levels are not related to vascular complications in patients with prediabetes. Diabetes Metab Syndr. 2019; 13(2):1005–10.10.1016/j.dsx.2019.01.01431336435Search in Google Scholar

7. KIM CS., PARK S., KIM J. The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise. J Exerc Nutr Biochem. 2017; 21(3):55–61.10.20463/jenb.2017.0027564320329036767Search in Google Scholar

8. CHAUDHURI J., BAINS Y., GUHA S., KAHN A., HALL D., BOSE N., et al. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 2018; 28(3):337–52.10.1016/j.cmet.2018.08.014635525230184484Search in Google Scholar

9. YAMAGISHI S. Role of advanced glycation endproduct (AGE)-receptor for advanced glycation endproduct (RAGE) axis in cardiovascular disease and its therapeutic intervention. Circ J. 2019; 83(9):1822–8.10.1253/circj.CJ-19-061831366777Search in Google Scholar

10. CEPAS V., COLLINO M., MAYO JC., SAINZ RM. Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases. Antioxidants. 2020; 9(2):142.10.3390/antiox9020142707056232041293Search in Google Scholar

11. DE LA CRUZ-ARES S., CARDELO MP., GUTIÉRREZ-MARISCAL FM., TORRES-PEÑA JD., GARCÍA-RIOS A., KATSIKI N., et al. Endothelial dysfunction and advanced glycation end products in patients with newly diagnosed versus established diabetes: from the CORDIOPREV study. Nutrients. 2020; 12(1):238.10.3390/nu12010238701974631963378Search in Google Scholar

12. ROJAS A., AÑAZCO C., GONZÁLEZ I., ARAYA P. Extracellular matrix glycation and receptor for advanced glycation end-products activation: a missing piece in the puzzle of the association between diabetes and cancer. Carcinogenesis. 2018; 39(4):515–21.10.1093/carcin/bgy01229373651Search in Google Scholar

13. TOPRAK C., YIGITASLAN S. Alagebrium and complications of diabetes mellitus. Eurasian J Med. 2019; 51(3):285–92.10.5152/eurasianjmed.2019.18434681292031692712Search in Google Scholar

14. BORGHETTI G., VON LEWINSKI D., EATON DM., SOURIJ H., HOUSER SR., WALLNER M. Diabetic cardiomyopathy: current and future therapies. beyond glycemic control. Front Physiol. 2018; 9:1514.10.3389/fphys.2018.01514621850930425649Search in Google Scholar

15. YAMAGISHI S., MATSUI T. Role of hyperglycemia-induced advanced glycation end-product (AGE) accumulation in atherosclerosis. Ann Vasc Dis. 2018; 11(3):253–8.10.3400/avd.ra.18-00070620062230402172Search in Google Scholar

16. CHANG GJ., YEH YH., CHEN WJ., KO YS., PANG JS., LEE HY. Inhibition of advanced glycation end products formation attenuates cardiac electrical and mechanical remodeling and vulnerability to tachyarrhythmias in diabetic rats. J Pharmacol Exp Ther. 2019; 368(1):66–78.10.1124/jpet.118.25208030381326Search in Google Scholar

17. PERRONE A., GIOVINO A., BENNY J., MARTINELLI F. Advanced glycation end products (AGEs): biochemistry, signaling, analytical methods, and epigenetic effects. Oxid Med Cell Longev. 2020; 2020:3818196.10.1155/2020/3818196710432632256950Search in Google Scholar

18. DI PINO A., URBANO F., SCICALI R., DI MAURO S., FILIPPELLO A., SCAMPORRINO A., et al. 1 h postload glycemia is associated with low endogenous secretory receptor for advanced glycation end-product levels and early markers of cardiovascular disease. Cells. 2019; 8(8):910.10.3390/cells8080910672174331426413Search in Google Scholar

19. EGAÑA-GORROÑO L., LÓPEZ-DÍEZ R., YEPURI G., RAMIREZ LS., REVERDATTO S., GUGGER PF., et al. Receptor for advanced glycation end products (RAGE) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: insights from human subjects and animal models. Front Cardiovasc Med. 2020; 7:37.10.3389/fcvm.2020.00037707607432211423Search in Google Scholar

20. FISHMAN SL., SONMEZ H., BASMAN C., SINGH V., PORETSKY L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med. 2018; 24(1):59.10.1186/s10020-018-0060-3625116930470170Search in Google Scholar

21. ROWAN S., BEJARANO E., TAYLOR A. Mechanistic targeting of advanced glycation end-products in age-related diseases. BBA-Mol Basis Dis. 2018; 1864(12):3631–43.10.1016/j.bbadis.2018.08.036682227130279139Search in Google Scholar

22. XU L., WANG YR., LI PC., FENG B. Advanced glycation end products increase lipids accumulation in macrophages through upregulation of receptor of advanced glycation end products: increasing uptake, esterification and decreasing efflux of cholesterol. Lipids Health Dis. 2016; 15(1):161.10.1186/s12944-016-0334-0502892627644038Search in Google Scholar

23. SAREMI A., HOWELL S., SCHWENKE DC., BAHN G., BEISSWENGER PJ., REAVEN PD., et al. Advanced glycation end products, oxidation products, and the extent of atherosclerosis during the VA diabetes trial and follow-up study. Diabetes care. 2017; 40(4):591–8.10.2337/dc16-1875536027928148544Search in Google Scholar

24. KOSMOPOULOS M., DREKOLIAS D., ZAVRAS PD., PIPERI C., PAPAVASSILIOU AG. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. BBA-Mol Basis Dis. 2019; 1865(3):611–19.10.1016/j.bbadis.2019.01.00630611860Search in Google Scholar

25. STEFANO GB., CHALLENGER S., KREAM RM. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur J Nutr. 2016; 55(8):2339–45.10.1007/s00394-016-1212-2512262227084094Search in Google Scholar

26. LIU Q., HUA B., SU W., DI B., YU S., GAO S., et al. AGEs impair Kv channel-mediated vasodilation of coronary arteries by activating the NF-κB signaling pathway in ZDF rats. Biomed Pharmacother. 2019; 120:109527.10.1016/j.biopha.2019.10952731629953Search in Google Scholar

27. BONGARZONE S., SAVICKAS V., LUZI F., GEE AD. Targeting the receptor for advanced glycation endproducts (RAGE): a medicinal chemistry perspective. J Med Chem. 2017; 60(17):7213–32.10.1021/acs.jmedchem.7b00058560136128482155Search in Google Scholar

28. SUN M., LI Y., BU W., ZHAO J., ZHU J., GU L., et al. DJC suppresses advanced glycation end products-induced JAK-STAT signaling and ROS in mesangial cells. Evid-Based Compl Alt. 2017; 2017:2942830.10.1155/2017/2942830546733528630633Search in Google Scholar

29. YU J., WU H., LIU ZY., ZHU Q., SHAN C., ZHANG KQ. Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation. Int J Mol Med. 2017; 40(4): 1185–93.10.3892/ijmm.2017.3098559347228849106Search in Google Scholar

30. REN X., REN L., WEI Q., SHAO H., CHEN L., LIU N. Advanced glycation end-products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Cardiovasc Diabetol. 2017; 16(1):52.10.1186/s12933-017-0531-9539777028427390Search in Google Scholar

31. BRALEY A., KWAK T., JULES J., HARJA E., LANDGRAF R., HUDSON BI. Regulation of receptor for advanced glycation end products (RAGE) ectodomain shedding and its role in cell function. J Biol Chem. 2016; 291(23):12057–73.10.1074/jbc.M115.702399493325827022018Search in Google Scholar

32. CRASCÌ L., LAURO MR., PUGLISI G., PANICO A. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs metalloproteinases inhibition. Crit Rev Food Sci Nutr. 2018; 58(6):893–904.10.1080/10408398.2016.122965727646710Search in Google Scholar

33. KAUR R., KAUR M., SINGH J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018; 17(1):121.10.1186/s12933-018-0763-3611798330170601Search in Google Scholar

34. ROUMELIOTIS A., ROUMELIOTIS S., PANAGOUTSOS S., THEODORIDIS M., ARGYRIOU C., TAVRIDOU A., et al. Carotid intima-media thickness is an independent predictor of all-cause mortality and cardiovascular morbidity in patients with diabetes mellitus type 2 and chronic kidney disease. Ren Fail. 2019; 41(1):131–8.10.1080/0886022X.2019.1585372644211530909780Search in Google Scholar

35. JOUBERT M., MANRIQUE A., CARIOU B., PRIEUR X. Diabetes-related cardiomyopathy: the sweet story of glucose overload from epidemiology to cellular pathways. Diabetes Metab. 2019; 45(3):238–47.10.1016/j.diabet.2018.07.00330078623Search in Google Scholar

36. HABIBI J., AROOR AR., SOWERS JR., JIA G., HAYDEN MR., GARRO M., et al. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol. 2017; 16(1):9.10.1186/s12933-016-0489-z523727428086951Search in Google Scholar

37. AHMAD MN., FARAH AI., AL-QIRIN TM. Examining the role of alpha-lipoic acid and epigallocatechin-c-gallate in inhibiting sugar-induced myoglobin glycation: scientific gaps in current knowledge? Nat Sci. 2020; 18(6):17–25.Search in Google Scholar

38. LILJE C., CRONAN JC., SCHWARTZENBURG EJ., OWERS EM., CLESI P., GOMEZ R., et al. Intima-media thickness at different arterial segments in pediatric type 1 diabetes patients and its relationship with advanced glycation end products. Pediatr Diabetes. 2018; 19(3):450–6.10.1111/pedi.1255728664608Search in Google Scholar

39. MATSUMOTO T., KOJIMA M., TAKAYANAGI K., KATOME T., TAGUCHI K., KOBAYASHI T. Amplification of the COX/TXS/TP receptor pathway enhances uridine diphosphate-induced contraction by advanced glycation end products in rat carotid arteries. Pflug Arch Eur J phy. 2019; 471(11–12):1505–17.10.1007/s00424-019-02330-y31736003Search in Google Scholar

40. RAJARAMAN B., RAMADAS N., KRISHNASAMY S., RAVI V., PATHAK A., DEVASENA CS., et al. Hyperglycaemia cause vascular inflammation through advanced glycation end products/early growth response-1 axis in gestational diabetes mellitus. Mol Cell Biochem. 2019; 456(1–2):179–90.10.1007/s11010-019-03503-030767098Search in Google Scholar

41. PETRIE JR., GUZIK TJ., TOUYZ RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018; 34(5):575–84.10.1016/j.cjca.2017.12.005595355129459239Search in Google Scholar

42. CLARKE RE., DORDEVIC AL., TAN SM., RYAN L., COUGHLAN MT. Dietary advanced glycation end products and risk factors for chronic disease: a systematic review of randomized controlled trials. Nutrients. 2016; 8(3):125.10.3390/nu8030125480885526938557Search in Google Scholar

43. MAKIN V., LANSANG MC. Diabetes management: beyond hemoglobin A1c. Cleve Clin J Med. 2019; 86(9):595–600.10.3949/ccjm.86a.1803131498766Search in Google Scholar

44. REAVEN PD., EMANUELE NV., WIITALA WL., BAHN GD., REDA DJ., MCCARREN M., et al. Intensive glucose control in patients with type 2 diabetes – 15-year follow-up. N Engl J Med. 2019; 380(23):2215–24.10.1056/NEJMoa1806802670625331167051Search in Google Scholar

45. KLONT F., HADDERINGH M., HORVATOVICH P., TEN HACKEN N., BISCHOFF R. Affimers as an alternative to antibodies in an affinity LC-MS assay for quantification of the soluble receptor of advanced glycation end-products (sRAGE) in human serum. J Proteome Res. 2018; 17(8):2892–99.10.1021/acs.jproteome.8b00414607993030005571Search in Google Scholar

46. KLONT F., POUWELS SD., HERMANS J., VAN DE MERBEL NC., HORVATOVICH P., TENHACKEN N., et al. A fully validated liquid chromatography-mass spectrometry method for the quantification of the soluble receptor of advanced glycation end-products (sRAGE) in serum using immunopurification in a 96-well plate format. Talanta. 2018; 182:414–21.10.1016/j.talanta.2018.02.01529501172Search in Google Scholar

47. BANARJEE R., SHARMA A., BAI S., DESHMUKH A., KULKARNI M. Proteomic study of endothelial dysfunction induced by AGEs and its possible role in diabetic cardiovascular complications. J Proteom. 2018; 187:69–79.10.1016/j.jprot.2018.06.00929935336Search in Google Scholar

48. Qiu H., Jin L., Chen J., Shi M., Shi F., Wang M., et al. Comprehensive glycomic analysis reveals that human serum albumin glycation specifically affects the pharmacokinetics and efficacy of different anticoagulant drugs in diabetes. Diabetes. 2020; 69(4):760–70.10.2337/db19-073831974145Search in Google Scholar

49. CAVERO-REDONDO I., SORIANO-CANO A., ÁLVAREZ-BUENO C., CUNHA PG., MARTÍNEZ-HORTELANO JA., GARRIDO-MIGUEL M., et al. Skin autofluorescence-indicated advanced glycation end products as predictors of cardiovascular and all-cause mortality in high-risk subjects: a systematic review and meta-analysis. J Am Heart Assoc. 2018; 7(18):e009833.10.1161/JAHA.118.009833622296630371199Search in Google Scholar

50. PRASAD C., DAVIS KE., IMRHAN V., JUMA S., VIJAYAGOPAL P. Advanced glycation end products and risks for chronic diseases: intervening through lifestyle modification. Am J Lifestyle Med. 2019; 13(4):384–404.10.1177/1559827617708991660062531285723Search in Google Scholar

51. WANG J., WANG S., WANG W., CHEN J., ZHANG Z., ZHENG Q., et al. Protection against diabetic cardiomyopathy is achieved using a combination of sulforaphane and zinc in type 1 diabetic OVE26 mice. J Cell Mol Med. 2019; 23(9):6319–30.10.1111/jcmm.14520671421831270951Search in Google Scholar

52. ULLA A., MOHAMED MK., SIKDER B., RAHMAN AT., SUMI FA., HOSSAIN M., et al. Coenzyme Q10 prevents oxidative stress and fibrosis in isoprenaline induced cardiac remodeling in aged rats. BMC Pharmacol Toxico. 2017; 18:29.10.1186/s40360-017-0136-7539931928427467Search in Google Scholar

53. TANG ST., TANG HQ., SU H., WANG Y., ZHOU Q., ZHANG Q., et al. Glucagon-like peptide-1 attenuates endothelial barrier injury in diabetes via cAMP/PKA mediated down-regulation of MLC phosphorylation. Biomed Pharmacother. 2019; 113:108667.10.1016/j.biopha.2019.10866730852419Search in Google Scholar

54. OJIMA A., MATSUI T., NAKAMURA N., HIGASHIMOTO Y., UEDA S., FUKAMI K., et al. DNA aptamer raised against advanced glycation end products (AGEs) improves glycemic control and decreases adipocyte size in fructose-fed rats by suppressing AGE-RAGE axis. Horm Metab Res. 2015; 47(4):253–8.Search in Google Scholar

55. LAMAS GA., GOERTZ C., BOINEAU R., MARK DB., ROZEMA T., NAHIN RL., et al. Design of the trial to assess chelation therapy (TACT). Am Heart J. 2012; 163(1):7–12.10.1016/j.ahj.2011.10.002324395422172430Search in Google Scholar

56. HONGWEI Y., RUIPING C., YINGYAN F., GUANJUN Z., JIE H., XINGYU L., et al. Effect of Irbesartan on AGEs-RAGE and MMPs systems in rat type 2 diabetes myocardial-fibrosis model. Exp Biol Med. 2019; 244(7):612–20.10.1177/1535370219840981654569431027433Search in Google Scholar

57. ZHOU Z., TANG Y., JIN X., CHEN C., LU Y., LIU L., et al. Metformin inhibits advanced glycation end products-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression. J Diabetes Res. 2016; 2016:4847812.10.1155/2016/4847812505957027761470Search in Google Scholar

58. GAO H., LI H., LI W., SHEN X., DI, B. Pioglitazone attenuates atherosclerosis in diabetic mice by inhibition of receptor for advanced glycation end-product (RAGE) signaling. Med Sci Mon Int Med J Exp Clin Res. 2017; 23:6121–31.10.12659/MSM.907401Search in Google Scholar

59. ALTUNINA NV., LIZOGUB VG., BONDARCHUK OM. Alpha-lipoic acid as a means of influence on systemic inflammation in type 2 diabetes mellitus patients with prior myocardial infarction. J Med Life. 2020; 13(1):32–6.10.25122/jml-2020-0018Search in Google Scholar

eISSN:
2501-062X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, other, Cardiology, Gastroenterology, Rheumatology