Open Access

Translating High-Frame-Rate Imaging into Clinical Practice: Where Do We Stand?


Cite

Benoy Nalin, S. Echocardiography in the era of multimodality cardiovascular imaging. Biomed Res Int 2013; 1–11. Benoy Nalin S. Echocardiography in the era of multimodality cardiovascular imaging . Biomed Res Int 2013 ; 1 11 . Search in Google Scholar

Cikes M, Tong L, Sutherland GR, D’Hooge, J. Ultrafast cardiac ultrasound imaging: technical principles, applications, and clinical benefits. JACC Cardiovasc Imaging 2014; 7:812–823. Cikes M Tong L Sutherland GR D’Hooge J. Ultrafast cardiac ultrasound imaging: technical principles, applications, and clinical benefits . JACC Cardiovasc Imaging 2014 ; 7 : 812 823 . Search in Google Scholar

Voigt J-U, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr 2015; 28(2):183–93. doi:10.1016/j.echo.2014.11.003. Voigt J-U Pedrizzetti G Lysyansky P Marwick TH Houle H Baumann R Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging . J Am Soc Echocardiogr 2015 ; 28 ( 2 ): 183 93 . doi: 10.1016/j.echo.2014.11.003 . Open DOISearch in Google Scholar

Voigt JU, Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease. JACC: Cardiovasc Imaging 2019; 12(9):1849–1863. doi: 10.1016/j.jcmg.2019.01.044. Voigt JU Cvijic M 2- and 3-dimensional myocardial strain in cardiac health and disease . JACC: Cardiovasc Imaging 2019 ; 12 ( 9 ): 1849 1863 . doi: 10.1016/j.jcmg.2019.01.044 . Open DOISearch in Google Scholar

Bernard O, Bosch JG, Heyde B, Alessandrini M, Barbosa D, Camarasu-Pop S, et al. Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography. IEEE Trans Med Imaging 2016; 35:967–977. Bernard O Bosch JG Heyde B Alessandrini M Barbosa D CamarasuPop S Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography . IEEE Trans Med Imaging 2016 ; 35 : 967 977 . Search in Google Scholar

Hensel KO, Jenke A, Leischik R. Speckle-tracking and tissue-doppler stress echocardiography in arterial hypertension: a sensitive tool for detection of subclinical LV impairment. Biomed Res Int 2014. doi: 10.1155/2014/472562. Epub 2014 Oct 15. Hensel KO Jenke A Leischik R. Speckle-tracking and tissue-doppler stress echocardiography in arterial hypertension: a sensitive tool for detection of subclinical LV impairment . Biomed Res Int 2014 . doi: 10.1155/2014/472562 . Epub 2014 Oct 15 . Open DOISearch in Google Scholar

Yodwut C, Weinert L, Klas B, Lang RM, Mor-Avi V. Effects of frame rate n three-dimensional speckle-tracking-based measurements of myocardial deformation. J Am Soc Echocardiogr 2012; 25:978–985. Yodwut C Weinert L Klas B Lang RM Mor-Avi V. Effects of frame rate n three-dimensional speckle-tracking-based measurements of myocardial deformation . J Am Soc Echocardiogr 2012 ; 25 : 978 985 . Search in Google Scholar

Brekke B, Nilsen LC, Lund J, Torp H, Bjastad T, Amundsen BH, et al. Ultra-high frame rate tissue Doppler imaging. Ultrasound Med Biol 2014; 40:222–231. Brekke B Nilsen LC Lund J Torp H Bjastad T Amundsen BH Ultra-high frame rate tissue Doppler imaging . Ultrasound Med Biol 2014 ; 40 : 222 231 . Search in Google Scholar

Ortega A, Provost J, Tong L, Santos P, Heyde B, Pernot M, D’hooge J. A comparison of the performance of different multiline transmit setups for fast volumetric cardiac ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2016; 63:2082–2091. Ortega A Provost J Tong L Santos P Heyde B Pernot M D’hooge J. A comparison of the performance of different multiline transmit setups for fast volumetric cardiac ultrasound . IEEE Trans Ultrason Ferroelectr Freq Control 2016 ; 63 : 2082 2091 . Search in Google Scholar

Santos P, Tong L, Ortega A, Løvstakken L, Samset E, D’hooge J. Acoustic output of multi-line transmit beamforming for fast cardiac imaging: A simulation study. IEEE Trans Ultrason Ferroelectr Freq Control 2015; 62:1320–1330. Santos P Tong L Ortega A Løvstakken L Samset E D’hooge J. Acoustic output of multi-line transmit beamforming for fast cardiac imaging: A simulation study . IEEE Trans Ultrason Ferroelectr Freq Control 2015 ; 62 : 1320 1330 . Search in Google Scholar

Tong L, Ramalli A, Jasaityte R, Tortoli P, D’hooge J. Multi-transmit beam forming for fast cardiac iImaging—experimental validation and in vivo application. IEEE Trans Med Imaging 2014; 33:1205–1219. Tong L Ramalli A Jasaityte R Tortoli P D’hooge J. Multi-transmit beam forming for fast cardiac iImaging—experimental validation and in vivo application . IEEE Trans Med Imaging 2014 ; 33 : 1205 1219 . Search in Google Scholar

Tong L et al. Plane wave imaging for cardiac motion estimation at high temporal resolution: A feasibility study in-vivo. Ultrasonics Symposium (IUS), 2012 IEEE International 2012; 228–231. doi:10.1109/ULTSYM.2012.0057. Tong L Plane wave imaging for cardiac motion estimation at high temporal resolution: A feasibility study in-vivo . Ultrasonics Symposium (IUS), 2012 IEEE International 2012 ; 228 231 . doi: 10.1109/ULTSYM.2012.0057 . Open DOISearch in Google Scholar

Kanai H. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52. Kanai H. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation . IEEE Trans Ultrason Ferroelectr Freq Control 2005 ; 52 . Search in Google Scholar

Voigt J-U. Neue Techniken zur funktionellen Analyse der kardialen Mechanik. In Praxis der Echokardiografie. New York City, Thieme, 2021. Voigt J-U. Neue Techniken zur funktionellen Analyse der kardialen Mechanik . In Praxis der Echokardiografie . New York City , Thieme , 2021 . Search in Google Scholar

Tanter M, Bercoff J, Sandrin L, Fink M. Ultrafast compound imaging for 2-D motion vector estimation: application to transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49:1363–74. Tanter M Bercoff J Sandrin L Fink M. Ultrafast compound imaging for 2-D motion vector estimation: application to transient elastography . IEEE Trans Ultrason Ferroelectr Freq Control 2002 ; 49 : 1363 74 . Search in Google Scholar

Caenen, A. et al. Effect of ultrafast imaging on shear wave visualization and characterization: an experimental and computational study in a pediatric ventricular model 2017Applied Sciences; 7:840. Caenen A. Effect of ultrafast imaging on shear wave visualization and characterization: an experimental and computational study in a pediatric ventricular model 2017 Applied Sciences ; 7 : 840 . Search in Google Scholar

Papadacci C, Pernot M, Couade M, Fink M, Tanter M. High-contrast ultrafast imaging of the heart. IEEE Trans Ultrason Ferroelectr Freq Control 2014; 61:288–301. Papadacci C Pernot M Couade M Fink M Tanter M. High-contrast ultrafast imaging of the heart . IEEE Trans Ultrason Ferroelectr Freq Control 2014 ; 61 : 288 301 . Search in Google Scholar

Song S, Huang Z, Nguyen T-M, Wong EY, Arnal B, Donnell M, Wang RK. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography. J Biomed Optics 2013; 18(12):121509. doi: 10.1117/1.JBO.18.12.121509. Song S Huang Z Nguyen T-M Wong EY Arnal B Donnell M Wang RK. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography . J Biomed Optics 2013 ; 18 ( 12 ): 121509 . doi: 10.1117/1.JBO.18.12.121509 . Open DOISearch in Google Scholar

Chang E J-H, Guo Y, Lee W-N. Experimental investigation of shear wave imaging in thin, soft media in various coupling conditions. IEEE International Ultrasonics Symposium (IUS) 1–1 (IEEE, 2017). doi:10.1109/ULTSYM.2017.8092577. Chang E J-H Guo Y Lee W-N. Experimental investigation of shear wave imaging in thin, soft media in various coupling conditions . IEEE International Ultrasonics Symposium (IUS) 1–1 (IEEE, 2017) . doi: 10.1109/ULTSYM.2017.8092577 . Open DOISearch in Google Scholar

Correia, M. et al. Ultrafast Harmonic Coherent Compound (UHCC) imaging for high frame rate echocardiography and Shear Wave Elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2016; 63(3):420–31. doi:10.1109/TUFFC. Correia M. Ultrafast Harmonic Coherent Compound (UHCC) imaging for high frame rate echocardiography and Shear Wave Elastography . IEEE Trans Ultrason Ferroelectr Freq Control 2016 ; 63 ( 3 ): 420 31 . doi: 10.1109/TUFFC . Open DOISearch in Google Scholar

Bouchard RR, Hsu SJ, Wolf PD, Trahey GE. In vivo cardiac, acoustic-radiation-force-driven, shear wave velocimetry. Ultrason Imaging 2009; 31:201–213. Bouchard RR Hsu SJ Wolf PD Trahey GE. In vivo cardiac, acoustic-radiation-force-driven, shear wave velocimetry . Ultrason Imaging 2009 ; 31 : 201 213 . Search in Google Scholar

Villemain O, Correia M, Mousseaux E, Baranger J, Zarka S, Podetti I, et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults. JACC Cardiovasc Imaging 2018; 12(7 Pt 1):1135–1145. doi:10.1016/j.jcmg.2018.02.002. Villemain O Correia M Mousseaux E Baranger J Zarka S Podetti I Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults . JACC Cardiovasc Imaging 2018 ; 12 ( 7 Pt 1 ): 1135 1145 . doi: 10.1016/j.jcmg.2018.02.002 . Open DOISearch in Google Scholar

Vos HJ, et al. Cardiac shear wave velocity detection in the porcine heart. Ultrasound Med Biol 2017; 43:753–764. Vos HJ Cardiac shear wave velocity detection in the porcine heart . Ultrasound Med Biol 2017 ; 43 : 753 764 . Search in Google Scholar

Santos P, Petrescu A, Pedrosa J, Orlowska M, Komini V, Voigt JU, D’hooge. Natural shear wave imaging in the human heart: normal values, feasibility and reproducibility. 2018; IEEE Trans Ultrason Ferroelectr Freq Control 1–1. doi:10.1109/TUFFC.2018.2881493. Santos P Petrescu A Pedrosa J Orlowska M Komini V Voigt JU D’hooge Natural shear wave imaging in the human heart: normal values, feasibility and reproducibility . 2018 ; IEEE Trans Ultrason Ferroelectr Freq Control 1 1 . doi: 10.1109/TUFFC.2018.2881493 . Open DOISearch in Google Scholar

Couade M, et al. In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle. IEEE Trans Med Imaging 2011; 30:295–305. Couade M In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle . IEEE Trans Med Imaging 2011 ; 30 : 295 305 . Search in Google Scholar

Villemain O, Correia M, Khraiche D, Podetti I, Meot M, Legendre A, et al. Myocardial stiffness assessment using shear wave imaging in pediatric hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 2017; 11(5):779–781. doi:10.1016/j.jcmg.2017.08.018. Villemain O Correia M Khraiche D Podetti I Meot M Legendre A Myocardial stiffness assessment using shear wave imaging in pediatric hypertrophic cardiomyopathy . JACC Cardiovasc Imaging 2017 ; 11 ( 5 ): 779 781 . doi: 10.1016/j.jcmg.2017.08.018 . Open DOISearch in Google Scholar

Pernot M, Couade M, Mateo P, Crozatier B, Fischmeister R, Tanter M. Real-time assessment of myocardial contractility using shear wave imaging 2011; 28;58(1):65–72. doi:10.1016/j.jacc.2011.02.042. Pernot M Couade M Mateo P Crozatier B Fischmeister R Tanter M. Real-time assessment of myocardial contractility using shear wave imaging 2011 ; 28;58 ( 1 ): 65 72 . doi: 10.1016/j.jacc.2011.02.042 . Open DOISearch in Google Scholar

Caenen A, Pernot M, Nightingale KR,, Voigt JU, Vos HJ, Segers P, D’hooge J. Assessing cardiac stiffness using ultrasound shear wave elastography. Phys Med Biol 2022; 67:02TR01. Caenen A Pernot M Nightingale KR Voigt JU Vos HJ Segers P D’hooge J. Assessing cardiac stiffness using ultrasound shear wave elastography . Phys Med Biol 2022 ; 67 : 02TR01 . Search in Google Scholar

Kanai H. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52:1931–1942. Kanai H. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation . IEEE Trans Ultrason Ferroelectr Freq Control 2005 ; 52 : 1931 1942 . Search in Google Scholar

Papadacci C, Finel V, Villemain O, Tanter M, Pernot M. 4D ultrafast ultrasound imaging of naturally occurring shear waves in the human heart. IEEE Trans Med Imaging 2020; 39:4436–4444. Papadacci C Finel V Villemain O Tanter M Pernot M. 4D ultrafast ultrasound imaging of naturally occurring shear waves in the human heart . IEEE Trans Med Imaging 2020 ; 39 : 4436 4444 . Search in Google Scholar

Salles S, Espeland T, Molares A, Aase SA, Hammer TA, Støylen A, et al. 3D myocardial mechanical wave measurements: toward in vivo 3D myocardial elasticity mapping. JACC Cardiovasc Imaging 2021; 14(8):1495–1505. doi:10.1016/j.jcmg.2020.05.037. Salles S Espeland T Molares A Aase SA Hammer TA Støylen A 3D myocardial mechanical wave measurements: toward in vivo 3D myocardial elasticity mapping . JACC Cardiovasc Imaging 2021 ; 14 ( 8 ): 1495 1505 . doi: 10.1016/j.jcmg.2020.05.037 . Open DOISearch in Google Scholar

Pernot M, Villemain O. Myocardial stiffness assessment by Uultrasound. JACC Cardiovasc Imaging 2020; 13:2314–2315. Pernot M Villemain O. Myocardial stiffness assessment by Uultrasound . JACC Cardiovasc Imaging 2020 ; 13 : 2314 2315 . Search in Google Scholar

Pernot M, Couade M, Mateo P, Crozatier B, Fischmeister R, Tanter M. Real-time assessment of myocardial contractility using shear wave imaging. J Am Coll Cardiol 2011; 58:65–72. Pernot M Couade M Mateo P Crozatier B Fischmeister R Tanter M. Real-time assessment of myocardial contractility using shear wave imaging . J Am Coll Cardiol 2011 ; 58 : 65 72 . Search in Google Scholar

Vejdani-Jahromi M, Freedman J, Nagle M, Kim Y-J, Trahey GE, Wolf PD. Quantifying myocardial contractility changes using ultrasound-based shear wave elastography. J Am Soc Echocardiogr 2017; 30:90–96. Vejdani-Jahromi M Freedman J Nagle M Kim Y-J Trahey GE Wolf PD . Quantifying myocardial contractility changes using ultrasound-based shear wave elastography . J Am Soc Echocardiogr 2017 ; 30 : 90 96 . Search in Google Scholar

Pernot M, Couade M, Mateo P, Crozatier B, Fischmeister R, Tanter M.. Real-time assessment of myocardial contractility using shear wave imaging. J Am Coll Cardiol 2011; 58:65–72. Pernot M Couade M Mateo P Crozatier B Fischmeister R Tanter M. . Real-time assessment of myocardial contractility using shear wave imaging . J Am Coll Cardiol 2011 ; 58 : 65 72 . Search in Google Scholar

Villemain O, Baranger MS, Friedberg MK, Papadocci C. Dizeux A, Messas E, et al. Ultrafast ultrasound imaging in pediatric and adult cardiology. JACC Cardiovasc Imaging 2019; 13(8):1771–1791. doi:10.1016/j. jcmg.2019.09.019. Villemain O Baranger MS Friedberg MK Papadocci C. Dizeux A Messas E Ultrafast ultrasound imaging in pediatric and adult cardiology . JACC Cardiovasc Imaging 2019 ; 13 ( 8 ): 1771 1791 . doi: 10.1016/j.jcmg.2019.09.019 . Open DOISearch in Google Scholar

Gheonea IA, Stoica Z. Bondari S. Differential diagnosis of breast lesions using ultrasound elastography. Indian J Radiol Imaging 2011; 21:301. Gheonea IA Stoica Z. Bondari S. Differential diagnosis of breast lesions using ultrasound elastography . Indian J Radiol Imaging 2011 ; 21 : 301 . Search in Google Scholar

Lee SM. Lee JM, Kang HJ, Yang HK, Yoon JH, Chang W, et al. Liver fibrosis staging with a new 2D-shear wave elastography using comb-push technique: Applicability, reproducibility, and diagnostic performance. PLoS One 2017; 1(5): e0177264. Lee SM Lee JM Kang HJ Yang HK Yoon JH Chang W Liver fibrosis staging with a new 2D-shear wave elastography using comb-push technique: Applicability, reproducibility, and diagnostic performance . PLoS One 2017 ; 1 ( 5 ): e0177264 . Search in Google Scholar

Marais L, Pernot M, Khettab H, Tanter M, Messas E, Zidi M, et al. Arterial stiffness assessment by shear wave elastography and ultrafast pulse wave imaging: comparison with reference techniques in normotensives and hypertensives. Ultrasound Med Biol 2019; 45:758–772. Marais L Pernot M Khettab H Tanter M Messas E Zidi M Arterial stiffness assessment by shear wave elastography and ultrafast pulse wave imaging: comparison with reference techniques in normotensives and hypertensives . Ultrasound Med Biol 2019 ; 45 : 758 772 . Search in Google Scholar

Urban MW, Pislaru C, Nenadic IZ, Kinnick RR, Greenleaf, JF. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV). IEEE Trans Med Imaging 2013; 32(2):247–261. doi:10.1109/TMI.2012.2222656. Urban MW Pislaru C Nenadic IZ Kinnick RR Greenleaf JF. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV) . IEEE Trans Med Imaging 2013 ; 32 ( 2 ): 247 261 . doi: 10.1109/TMI.2012.2222656 . Open DOISearch in Google Scholar

Bouchard RR, Hsu SJ, Palmeri ML, Rouze NC, Nightingale KR,Trahey GE. Acoustic radiation force-driven assessment of myocardial elasticity using the displacement ratio rate (DRR) method. Ultrasound Med Biol 2011; 37:1087–1100. Bouchard RR Hsu SJ Palmeri ML Rouze NC Nightingale KR Trahey GE. Acoustic radiation force-driven assessment of myocardial elasticity using the displacement ratio rate (DRR) method . Ultrasound Med Biol 2011 ; 37 : 1087 1100 . Search in Google Scholar

Bouchard RR, Hsu SJ, Wolf PD, Trahey GE. In vivo cardiac, acoustic-radiation-force-driven, shear wave velocimetry. Ultrason Imaging 2009; 31:201–213. Bouchard RR Hsu SJ Wolf PD Trahey GE. In vivo cardiac, acoustic-radiation-force-driven, shear wave velocimetry . Ultrason Imaging 2009 ; 31 : 201 213 . Search in Google Scholar

Petrescu A, Santos P, Orlowska M, Pedrosa J, Bézy S, Chakraborty B, et al. Velocities of naturally occurring myocardial shear waves increase with age and in cardiac amyloidosis. JACC Cardiovasc Imaging 2019; 12(12):2389–2398. doi:10.1016/j.jcmg.2018.11.029. Petrescu A Santos P Orlowska M Pedrosa J Bézy S Chakraborty B Velocities of naturally occurring myocardial shear waves increase with age and in cardiac amyloidosis . JACC Cardiovasc Imaging 2019 ; 12 ( 12 ): 2389 2398 . doi: 10.1016/j.jcmg.2018.11.029 . Open DOISearch in Google Scholar

Petrescu A, Bézy S, Cvijic M, Santos P, Orlowska M, Duchenne J, et al. Shear wave elastography using high-frame-rate imaging in the follow-up of heart transplantation recipients. JACC Cardiovasc Imaging 2020; 13:2304–2313. Petrescu A Bézy S Cvijic M Santos P Orlowska M Duchenne J Shear wave elastography using high-frame-rate imaging in the follow-up of heart transplantation recipients . JACC Cardiovasc Imaging 2020 ; 13 : 2304 2313 . Search in Google Scholar

Petrescu A, D’hooge J, Voigt JU. Concepts and applications of ultrafast cardiac ultrasound imaging. Echocardiography 2021; 38(1):7–15. Petrescu A D’hooge J Voigt JU. Concepts and applications of ultrafast cardiac ultrasound imaging . Echocardiography 2021 ; 38 ( 1 ): 7 15 . Search in Google Scholar

Lakatta EG. Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 2003; 107:346–54. Lakatta EG. Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease . Circulation 2003 ; 107 : 346 54 . Search in Google Scholar

Villemain O, Correia M, Mousseaux E, Baranger J, Zarka S, Podetti I, et al. Myocardial stiffness evaluation using noninvasive shear Wave Imaging in Healthy and Hypertrophic cardiomyopathic adults. JACC Cardiovasc Imaging 2019; 12:1135–1145. doi: 10.1016/j.jcmg.2018.02.002. Villemain O Correia M Mousseaux E Baranger J Zarka S Podetti I Myocardial stiffness evaluation using noninvasive shear Wave Imaging in Healthy and Hypertrophic cardiomyopathic adults . JACC Cardiovasc Imaging 2019 ; 12 : 1135 1145 . doi: 10.1016/j.jcmg.2018.02.002 . Open DOISearch in Google Scholar

Vos HJ, van Dalen BM, Bosch JG, van der Steen AFW, de Jong N. Myocardial passive shear wave detection. in 2015 IEEE International Ultrasonics Symposium (IUS) 1–4 (IEEE, 2015). doi:10.1109/ULTSYM.2015.0152. Vos HJ van Dalen BM Bosch JG van der Steen AFW de Jong N. Myocardial passive shear wave detection . in 2015 IEEE International Ultrasonics Symposium (IUS) 1 4 ( IEEE , 2015 ). doi: 10.1109/ULTSYM.2015.0152 . Open DOISearch in Google Scholar

Pernot M, Lee W-N, Bel A, Mateo P, Couade M, Tanter M, et al. Shear wave imaging of passive diastolic myocardial stiffness: Stunned versus infarcted myocardium. JACC Cardiovasc Imaging 2016; 9(9):1023–1030. Pernot M Lee W-N Bel A Mateo P Couade M Tanter M Shear wave imaging of passive diastolic myocardial stiffness: Stunned versus infarcted myocardium . JACC Cardiovasc Imaging 2016 ; 9 ( 9 ): 1023 1030 . Search in Google Scholar

Pedreira, O, Papadacci C, Augeul L, Loufouat J, Lo-Grasso M, Tanter M, et al. Quantitative stiffness assessment of cardiac grafts using ultrasound in a porcine model: a tissue biomarker for heart transplantation. EBioMedicine 2022; 83:104201. doi:10.1016/j.ebiom.2022.104201. Pedreira O Papadacci C Augeul L Loufouat J Lo-Grasso M Tanter M Quantitative stiffness assessment of cardiac grafts using ultrasound in a porcine model: a tissue biomarker for heart transplantation . EBioMedicine 2022 ; 83 : 104201 . doi: 10.1016/j.ebiom.2022.104201 . Open DOISearch in Google Scholar

Bézy S, Duchenne J, Orlowska M, Caenen A, Amoni M, Ingelaere S, et al. Impact of loading and myocardial mechanical properties on natural shear waves: comparison to pressure-volume loops. JACC Cardiovasc Imaging 2022; 15(12):2023–2034. doi: 10.1016/j.jcmg.2022.07.011. Epub 2022 Sep 14. Bézy S Duchenne J Orlowska M Caenen A Amoni M Ingelaere S Impact of loading and myocardial mechanical properties on natural shear waves: comparison to pressure-volume loops . JACC Cardiovasc Imaging 2022 ; 15 ( 12 ): 2023 2034 . doi: 10.1016/j.jcmg.2022.07.011 . Epub 2022 Sep 14 . Open DOISearch in Google Scholar

Bezy S, Cvijic M, Petrescu A, Orlowska M, Santos P, Duchenne J, et al. Shear wave propagation velocity after aortic valve closure could be a novel parameter for myocardial contractility. Eur Heart J - Cardiovasc Imaging 2020; 21(Suppl_1): jez319.034, https://doi.org/10.1093/ehjci/jez319.034 Bezy S Cvijic M Petrescu A Orlowska M Santos P Duchenne J Shear wave propagation velocity after aortic valve closure could be a novel parameter for myocardial contractility . Eur Heart J - Cardiovasc Imaging 2020 ; 21 ( Suppl_1 ): jez319.034, https://doi.org/10.1093/ehjci/jez319.034 Search in Google Scholar

Werner, A. How well does shear wave imaging predict elevated filling pressures? A comparison to the actual guideline algorithm. Eur Heart J -Cardiovasc Imaging 2022; 23(Suppl 1). jeab289.350, https://doi.org/10.1093/ehjci/jeab289.350 Werner A. How well does shear wave imaging predict elevated filling pressures? A comparison to the actual guideline algorithm . Eur Heart J -Cardiovasc Imaging 2022 ; 23 ( Suppl 1 ). jeab289.350, https://doi.org/10.1093/ehjci/jeab289.350 Search in Google Scholar

Wouters, L. et al. Septal scar detection in patients with left bundle branch block using echocardiographic shear wave elastography. JACC Cardiovasc Imaging 2022; 21;S1936-878X(22)00679-9.doi: 10.1016/j. jcmg.2022.11.008. Online ahead of print. Wouters L. Septal scar detection in patients with left bundle branch block using echocardiographic shear wave elastography . JACC Cardiovasc Imaging 2022 ; 21 ;S1936-878X(22)00679-9.doi: 10.1016/j.jcmg.2022.11.008 . Online ahead of print . Open DOISearch in Google Scholar

Marian AJ, Braunwald E. Hypertrophic cardiomyopathy. Circ Res 2017; 121(7):749–770. Marian AJ Braunwald E. Hypertrophic cardiomyopathy . Circ Res 2017 ; 121 ( 7 ): 749 770 . Search in Google Scholar

Villemain, O. et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults. JACC Cardiovasc Imaging 2019; 12:1135–1145. Villemain O. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults . JACC Cardiovasc Imaging 2019 ; 12 : 1135 1145 . Search in Google Scholar

Strachinaru M, Bosch JG, van Gils L, van Dalen BM, Schinkel 3, Antonius F W van der Steen AFL, et al. Naturally occurring shear waves in healthy volunteers and hypertrophic cardiomyopathy patients. Ultrasound Med Biol 2019; 45: 1977–1986. Strachinaru M Bosch JG van Gils L van Dalen BM Schinkel Antonius F W van der Steen AFL Naturally occurring shear waves in healthy volunteers and hypertrophic cardiomyopathy patients . Ultrasound Med Biol 2019 ; 45 : 1977 1986 . Search in Google Scholar

Strachinaru M, Bosch JG, Schinkel AFL, Michels M, Feyz L, de Jong N, et al. Local myocardial stiffness variations identified by high frame rate shear wave echocardiography. Cardiovasc Ultrasound 2020; 18:40. Strachinaru M Bosch JG Schinkel AFL Michels M Feyz L de Jong N Local myocardial stiffness variations identified by high frame rate shear wave echocardiography . Cardiovasc Ultrasound 2020 ; 18 : 40 . Search in Google Scholar

Fikrle M. et al. Cardiac amyloidosis: a comprehensive review. Cor Vasa 2013; 55: e60–e75. Fikrle M. Cardiac amyloidosis: a comprehensive review . Cor Vasa 2013 ; 55 : e60 e75 . Search in Google Scholar

Petrescu A, et al. Velocities of Naturally Occurring Myocardial Shear Waves Increase With Age and in Cardiac Amyloidosis. JACC Cardiovasc Imaging 12, 2389–2398. Petrescu A Velocities of Naturally Occurring Myocardial Shear Waves Increase With Age and in Cardiac Amyloidosis . JACC Cardiovasc Imaging 12 , 2389 2398 . Search in Google Scholar

Drazner MH. The progression of hypertensive heart disease. Circulation 2011; 123:327–334. Drazner MH. The progression of hypertensive heart disease . Circulation 2011 ; 123 : 327 334 . Search in Google Scholar

Cvijic M, Bézy S, Petrescu A, Santos P, Orlowska M, Chakraborty B, et al. Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease. Eur Heart J Cardiovasc Imaging 2020; 21(6):664–672. doi: 10.1093/ehjci/jez205.PMID: 31377789 Cvijic M Bézy S Petrescu A Santos P Orlowska M Chakraborty B Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease . Eur Heart J Cardiovasc Imaging 2020 ; 21 ( 6 ): 664 672 . doi: 10.1093/ehjci/jez205 . PMID: 31377789 Open DOISearch in Google Scholar

Dronavalli VB, Rogers CA, Banner NR. Primary cardiac allograft dysfunction-validation of a clinical definition. Transplantation 2015; 99:1919–1925. Dronavalli VB Rogers CA Banner NR. Primary cardiac allograft dysfunction-validation of a clinical definition . Transplantation 2015 ; 99 : 1919 1925 . Search in Google Scholar

Rowan RA, Billingham ME. Pathologic changes in the long-term transplanted heart: a morphometric study of myocardial hypertrophy, vascularity, and fibrosis. Hum Pathol 1990; 21:767–772. Rowan RA Billingham ME. Pathologic changes in the long-term transplanted heart: a morphometric study of myocardial hypertrophy, vascularity, and fibrosis . Hum Pathol 1990 ; 21 : 767 772 . Search in Google Scholar

Petrescu, A. et al. Shear Wave Elastography Using High-Frame-Rate Imaging in the Follow-Up of Heart Transplantation Recipients. JACC Cardiovasc Imaging 13, 2304–2313 (2020). Petrescu A. Shear Wave Elastography Using High-Frame-Rate Imaging in the Follow-Up of Heart Transplantation Recipients . JACC Cardiovasc Imaging 13 , 2304 2313 ( 2020 ) . Search in Google Scholar

Voigt, J. U. & Cvijic, M. 2- and 3-Dimensional Myocardial Strain in Cardiac Health and Disease. JACC: Cardiovascular Imaging vol. 12 1849–1863 Preprint at https://doi.org/10.1016/j.jcmg.2019.01.044 (2019). Voigt J. U. Cvijic M. 2- and 3-Dimensional Myocardial Strain in Cardiac Health and Disease . JACC: Cardiovascular Imaging vol. 12 1849 1863 Preprint at https://doi.org/10.1016/j.jcmg.2019.01.044 ( 2019 ) . Search in Google Scholar

Fujikura K, Makkiya M, Farooq M, Mohammed Makkiya1, Muhammad Farooq1, Yun Xing1, Wayne Humphrey1, Mohammad Hashim Mustehsan Xing Y, Humphrey W, Mustehsan MH, et al. Speckle-tracking echocardiography with novel imaging technique of Hhigher frame rate. J Clin Med 2021; 10(10:2095. Fujikura K Makkiya M Farooq M Makkiya Farooq Muhammad Xing Yun Humphrey Wayne Mustehsan Mohammad Hashim Xing Y Humphrey W Mustehsan MH Speckle-tracking echocardiography with novel imaging technique of Hhigher frame rate . J Clin Med 2021 ; 10 ( 10 : 2095 . Search in Google Scholar

Joos P, et al. High-Frame-Rate Speckle-Tracking Echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control 2018; 65:720–728. Joos P High-Frame-Rate Speckle-Tracking Echocardiography . IEEE Trans Ultrason Ferroelectr Freq Control 2018 ; 65 : 720 728 . Search in Google Scholar

Andersen MV, Moore C, Arges K, Søgaard P, Østergaard LR, Schmidt SE, et al. High-frame-rate deformation imaging in two dimensions using continuous speckle-feature tracking. Ultrasound Med Biol 2016; 42:2606–2615. Andersen MV Moore C Arges K Søgaard P Østergaard LR Schmidt SE High-frame-rate deformation imaging in two dimensions using continuous speckle-feature tracking . Ultrasound Med Biol 2016 ; 42 : 2606 2615 . Search in Google Scholar

Orlowska, M. et al. In-vivo comparison of multiline transmission and diverging wave imaging for high frame rate speckle tracking echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control 2020; 68(5):1511–1520. Orlowska M. In-vivo comparison of multiline transmission and diverging wave imaging for high frame rate speckle tracking echocardiography . IEEE Trans Ultrason Ferroelectr Freq Control 2020 ; 68 ( 5 ): 1511 1520 . Search in Google Scholar

Orlowska, M. et al. A novel 2-D speckle tracking method for high-frame-rate echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control 2020; 67:1764–1775. Orlowska M. A novel 2-D speckle tracking method for high-frame-rate echocardiography . IEEE Trans Ultrason Ferroelectr Freq Control 2020 ; 67 : 1764 1775 . Search in Google Scholar

Joos P. et al. High-Frame-Rate Speckle-Tracking Echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control 65, 720–728 (2018). Joos P. High-Frame-Rate Speckle-Tracking Echocardiography . IEEE Trans Ultrason Ferroelectr Freq Control 65 , 720 728 ( 2018 ) . Search in Google Scholar

Hajhosseiny R, Bustin A, Munoz C, Rashid I, Cruz G, Manning WJ, et al. Coronary magnetic resonance angiography. JACC Cardiovasc Imaging 2020; 13:2653–2672. Hajhosseiny R Bustin A Munoz C Rashid I Cruz G Manning WJ Coronary magnetic resonance angiography . JACC Cardiovasc Imaging 2020 ; 13 : 2653 2672 . Search in Google Scholar

Hoffmann U, Ferencik M, Cury RC, Pena A. Coronary CT angiography. J Nucl Med 2006; 47(5):797–806. Hoffmann U Ferencik M Cury RC Pena A. Coronary CT angiography . J Nucl Med 2006 ; 47 ( 5 ): 797 806 . Search in Google Scholar

Maresca D, Villemain O, Bizé A, Sambin L, Tanter M, et al. Noninvasive imaging of the coronary vasculature using ultrafast ultrasound. JACC Cardiovasc Imaging 2018; 11(6):798–808. doi:10.1016/j.jcmg.2017.05.021. Maresca D Villemain O Bizé A Sambin L Tanter M Noninvasive imaging of the coronary vasculature using ultrafast ultrasound . JACC Cardiovasc Imaging 2018 ; 11 ( 6 ): 798 808 . doi: 10.1016/j.jcmg.2017.05.021 . Open DOISearch in Google Scholar

Demene, C. et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and ultrasound sensitivity. IEEE Trans Med Imaging 2015; 34:2271–2285. Demene C. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and ultrasound sensitivity . IEEE Trans Med Imaging 2015 ; 34 : 2271 2285 . Search in Google Scholar

Correia M, Maresca D, Goudot G, Villemain O, Bizé A, Sambin L, Tanter T, et al. Quantitative imaging of coronary flows using 3D ultrafast Doppler coronary angiography. Phys Med Biol 2020; 65, (2020). Correia M Maresca D Goudot G Villemain O Bizé A Sambin L Tanter T Quantitative imaging of coronary flows using 3D ultrafast Doppler coronary angiography . Phys Med Biol 2020 ; 65 , ( 2020 ) . Search in Google Scholar

Chapman JV. The technical aspects of Doppler ultrasound. In The noninvasive evaluation of Hhemodynamics in congenital heart disease, J. V. Chapman and G. R. Sutherland (eds.). Springer, Dordrecht, The Netherlands, 1990, pp. 1–34. doi:10.1007/978-94-009-0647-1_1. Chapman JV. The technical aspects of Doppler ultrasound . In The noninvasive evaluation of Hhemodynamics in congenital heart disease , Chapman J. V. Sutherland G. R. (eds.). Springer , Dordrecht, The Netherlands , 1990 , pp. 1 34 . doi: 10.1007/978-94-009-0647-1_1 . Open DOISearch in Google Scholar

Prinz C, Faludi R, Walker A, Amzulescu M, Gao H, Uejima T, et al. Can echocardiographic particle image velocimetry correctly detect motion patterns as they occur in blood inside heart chambers? A validation study using moving phantoms. Cardiovasc Ultrasound 2012; 10:24. Prinz C Faludi R Walker A Amzulescu M Gao H Uejima T Can echocardiographic particle image velocimetry correctly detect motion patterns as they occur in blood inside heart chambers? A validation study using moving phantoms . Cardiovasc Ultrasound 2012 ; 10 : 24 . Search in Google Scholar

Fadnes S, Wigen MS, Nyrnes SA, Lovstakken L. In vivo intracardiac vector flow imaging using phased array transducers for pediatric cardiology. IEEE Trans Ultrason Ferroelectr Freq Control 2017; 64:1318–1326. Fadnes S Wigen MS Nyrnes SA Lovstakken L. In vivo intracardiac vector flow imaging using phased array transducers for pediatric cardiology . IEEE Trans Ultrason Ferroelectr Freq Control 2017 ; 64 : 1318 1326 . Search in Google Scholar

Fadnes S, Nyrnes SA, Torp H, Lovstakken L. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking. Ultrasound Med Biol 2014; 40:2379–2391. Fadnes S Nyrnes SA Torp H Lovstakken L. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking . Ultrasound Med Biol 2014 ; 40 : 2379 2391 . Search in Google Scholar

Ramalli A, Bezy S, Orlowska M, Boni E, Voigt J-U, D’hooge J. High frame rate color Doppler to measure intra-ventricular pressure gradients. Proceedings IEEE Ultrasonics 2020 (In press). Ramalli A Bezy S Orlowska M Boni E Voigt J-U D’hooge J. High frame rate color Doppler to measure intra-ventricular pressure gradients . Proceedings IEEE Ultrasonics 2020 (In press) . Search in Google Scholar

Wigen M, Lovstakken L. In vivo three-dimensional intra-cardiac vector flow imaging using a 2D matrix array transducer. In 2016 IEEE International Ultrasonics Symposium (IUS). doi:10.1109/ULTSYM.2016.7728690. Wigen M Lovstakken L. In vivo three-dimensional intra-cardiac vector flow imaging using a 2D matrix array transducer . In 2016 IEEE International Ultrasonics Symposium (IUS) . doi: 10.1109/ULTSYM.2016.7728690 . Open DOISearch in Google Scholar

Nyrnes SA, Fadnes S, Wigen MS, Mertens L, Lovstakken L. . Blood speckle-tracking based on high-frame rate ultrasound Iimaging in pediatric cardiology. J Am Soc Echocardiogr 2020; 33:493–503.e5. Nyrnes SA Fadnes S Wigen MS Mertens L Lovstakken L. . Blood speckle-tracking based on high-frame rate ultrasound Iimaging in pediatric cardiology . J Am Soc Echocardiogr 2020 ; 33 : 493 503.e5 . Search in Google Scholar

Wigen, MS, Fadnes S, Rodriguez-Molares A, Bjastad T, Eriksen M, Stensath KH, et al. 4-D intracardiac ultrasound vector flow imaging–feasibility and comparison to Pphase-contrast MRI. IEEE Trans Med Imaging 2018; 37:2619–2629. Wigen MS Fadnes S Rodriguez-Molares A Bjastad T Eriksen M Stensath KH 4-D intracardiac ultrasound vector flow imaging–feasibility and comparison to Pphase-contrast MRI . IEEE Trans Med Imaging 2018 ; 37 : 2619 2629 . Search in Google Scholar

Lee WN, Pernot M, Couade M, Messas E, Bruneval P, Bel A, et al. Mapping myocardial fiber orientation using echocardiography-based shear wave imaging. IEEE Trans Med Imaging 2012; 31:554–562. Lee WN Pernot M Couade M Messas E Bruneval P Bel A Mapping myocardial fiber orientation using echocardiography-based shear wave imaging . IEEE Trans Med Imaging 2012 ; 31 : 554 562 . Search in Google Scholar

Gennisson JL, Deffieux T, Macé E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 2010; 36(5):789–801. Gennisson JL Deffieux T Macé E Montaldo G Fink M Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging . Ultrasound Med Biol 2010 ; 36 ( 5 ): 789 801 . Search in Google Scholar

Lee WN, Larrat B, Pernot M, Tanter M. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium. Phys Med Biol 2012; 57(16):5075–5095. Lee WN Larrat B Pernot M Tanter M. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium . Phys Med Biol 2012 ; 57 ( 16 ): 5075 5095 . Search in Google Scholar

Correia, M. et al. 3D elastic tensor imaging in weakly transversely isotropic soft tissues. Physics in Medicine & Biology 63, 155005 (2018). Correia M. 3D elastic tensor imaging in weakly transversely isotropic soft tissues . Physics in Medicine & Biology 63 , 155005 ( 2018 ) . Search in Google Scholar

Lee, W.-N. et al. Mapping myocardial fiber orientation using echocardiography-based shear wave imaging. IEEE Trans Med Imaging 31, 554–562 (2012). Lee W.-N. Mapping myocardial fiber orientation using echocardiography-based shear wave imaging . IEEE Trans Med Imaging 31 , 554 562 ( 2012 ) . Search in Google Scholar

Ngo HHP, Poulard T, Brum J, Gennisson JL. Anisotropy in ultrasound shear wave elastography: an add-on to muscles characterization. Front Physiol 2022; 13, (2022). Ngo HHP Poulard T Brum J Gennisson JL. Anisotropy in ultrasound shear wave elastography: an add-on to muscles characterization . Front Physiol 2022 ; 13 , ( 2022 ) . Search in Google Scholar

Lee W-N, et al. Noninvasive assessment of myocardial anisotropy in vitro and in vivo using supersonic shear wave imaging. In 2010 IEEE International Ultrasonics Symposium (IEEE, 2010). doi:10.1109/ULTSYM.2010.5935898. Lee W-N Noninvasive assessment of myocardial anisotropy in vitro and in vivo using supersonic shear wave imaging . In 2010 IEEE International Ultrasonics Symposium (IEEE, 2010) . doi: 10.1109/ULTSYM.2010.5935898 . Open DOISearch in Google Scholar

Lee WN, Larrat B, Pernot M, Tanter M. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium. Phys Med Biol 2012; 57(16):5075–5095. Lee WN Larrat B Pernot M Tanter M. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium . Phys Med Biol 2012 ; 57 ( 16 ): 5075 5095 . Search in Google Scholar

eISSN:
2734-6382
Language:
English