Open Access

Geoprocessing of archival aerial photos and their scientific applications: A review

   | Jul 17, 2024

Cite

Adami, A. et al. (2015). 4D City transformations by time series of aerial images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5W4):339–344. Search in Google Scholar

Aguiar, F. C., Martins, M. J., Silva, P. C., and Fernandes, M. R. (2016). Riverscapes downstream of hydropower dams: Effects of altered ˚ows and historical land-use change. Landscape and Urban Planning, 153:83–98, doi:10.1016/j.landurbplan.2016.04.009. Search in Google Scholar

Aguilar, M. A., Aguilar, F. J., Fernández, I., and Mills, J. P. (2012). Accuracy assessment of commercial self-calibrating bundle adjustment routines applied to archival aerial photography. The Photogrammetric Record, 28(141):96–114, doi:10.1111/j.1477-9730.2012.00704.x. Search in Google Scholar

Aleithe, W. (2022). AFS150 – The new, fast photogrammetric scanner for analog airborne imagery. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Antic, J. (2024). Jantic/DeOldify [Python]. https://github.com/jantic/DeOldify, (Original work published 2018. Search in Google Scholar

Appeaning Addo, K., Walkden, M., and Mills, J. (2008). Detection, measurement and prediction of shoreline recession in Accra, Ghana. ISPRS Journal of Photogrammetry and Remote Sensing, 63(5):543–558, doi:10.1016/j.isprsjprs.2008.04.001. Search in Google Scholar

Bakker, M. and Lane, S. N. (2017). Archival photogrammetric analysis of river-˚oodplain systems using Structure from Motion (SfM) methods. Earth Surface Processes and Landforms, 42(8):1274–1286, doi:10.1002/esp.4085. Search in Google Scholar

Baltsavias, E. P. (1999). On the performance of photogrammetric scanners. Technical report. Search in Google Scholar

Baltsavias, E. P. and Käser, C. (1999). Quality evaluation of the DSW200, DSW300, SCAI and OrthoVision photogrammetric scanners. doi:10.3929/ETHZ-A-004334177. Search in Google Scholar

Bozzini, C. (2022). Monoplotting and historical aerial images for 3D GIS. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Brenner, S., Zambanini, S., and Sablatnig, R. (2018). Detection of bomb craters in WWII aerial images. In Proceedings of the OAGM Workshop, volume 2018, pages 94–97. Verlag der Technischen Universität Graz Graz, Austria, doi:10.3217/978-3-85125-603-1-20. Search in Google Scholar

Buller, H. (2019). Preservation and digitizing of historical aerial images in Norway. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Buller, H. (2022). Historical aerial images – What’s going on in Norway. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Bygren, A. and Hedqvist, E. (2019). Making it digital – Processing the aerial image archive of Sweden. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Caridade, C., Marçal, A. R., and Mendonça, T. (2008). The use of texture for image classification of black & white air photographs. International Journal of Remote Sensing, 29(2):593–607, doi:10.1080/01431160701281015. Search in Google Scholar

Carvalho, R. C., Kennedy, D. M., Niyazi, Y., Leach, C., Konlechner, T. M., and Ierodiaconou, D. (2020). Structure-from-motion photogrammetry analysis of historical aerial photography: Determining beach volumetric change over decadal scales. Earth Surface Processes and Landforms, 45(11):2540–2555, doi:10.1002/esp.4911. Search in Google Scholar

Chilczuk, M. and Ciołkosz, A. (1966). Zastosowanie zdjęć lotniczych w geografii (The use of aerial photographs in geography). Państwowe Wydawnictwo Naukowe. Search in Google Scholar

Cléri, I., Pierrot-Deseilligny, M., and Vallet, B. (2014). Automatic georeferencing of a heritage of old analog aerial photographs. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II–3:33–40, doi:10.5194/isprsannals-ii-3-33-2014. Search in Google Scholar

Cowley, D. C., Ferguson, L. M., and Williams, A. (2013). The aerial reconnaissance archives: A global aerial photographic collection. In Hanson, W. and Oltean, I., editors, Archaeology from historical aerial and satellite archives, pages 13–30. Springer, doi:10.1007/978-1-4614-4505-0_2. Search in Google Scholar

Craciun, D. and Le Bris, A. (2022). Automatic algorithm for geo-referencing historical-to-nowadays aerial images acquired in natural environments. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022:21–28, doi:10.5194/isprs-archives-xliii-b2-2022-21-2022. Search in Google Scholar

Cramer, M. (2022). On the use of historical imagery for cadastral photogrammetry: Case study from the Heilbronn district. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Cusicanqui, D., Rabatel, A., Bodin, X., Vincent, C., Thibert, E., Allain Duvillard, P., and Revil, A. (2021). Using historical aerial imagery to assess multidecadal kinematics and elevation changes. Application to mountain permafrost in the French Alps. In EGU General Assembly Conference Abstracts, pages EGU21–16371. doi:10.5194/egusphere-egu21-16371. Search in Google Scholar

Davidson, L. and Peppa, M. V. (2019). Experiences with processing and co-registration of archival image datasets. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Dias, M., Monteiro, J., Estima, J., Silva, J., and Martins, B. (2019). Semantic segmentation of high-resolution aerial imagery with W-Net models. In Progress in Artificial Intelligence: 19th EPIA Conference on Artificial Intelligence, EPIA 2019, Vila Real, Portugal, September 3–6, 2019, Proceedings, Part II 19, pages 486–498. Springer, doi:10.1007/978-3-030-30244-3_40. Search in Google Scholar

Dias, M., Monteiro, J., Estima, J., Silva, J., and Martins, B. (2020). Semantic segmentation and colorization of grayscale aerial imagery with W-Net models. Expert systems, 37(6):e12622, doi:10.1111/exsy.12622. Search in Google Scholar

Dušánek, P., Potůčková, M., and Hodač, J. (2019). Historical aerial images of Czechia – Archiving and applications in landscape studies. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Falkowski, P., Kuczyński, Z., and Uchański, J. (2007). Ortofoto zniszczonej Warszawy (Orthophoto of destroyed Warsaw). Geodeta: magazyn geoinformacyjny, pages 14–18. Search in Google Scholar

Farella, E. M., Malek, S., and Remondino, F. (2022a). Colorizing the past: Deep learning for the automatic colorization of historical aerial images. Journal of Imaging, 8(10):269, doi:10.3390/jimaging8100269. Search in Google Scholar

Farella, E. M., Morelli, L., Remondino, F., Mills, J. P., Haala, N., and Crompvoets, J. (2022b). The EuroSDR time benchmark for historical aerial images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022:1175–1182, doi:10.5194/isprs-archives-xliii-b2-2022-1175-2022. Search in Google Scholar

Faure, E., Ratajczak, R., Crispim-Junior, C., Perol, O., Tougne, L., and Fervers, B. (2018). Development of a software based on automatic multi-temporal aerial images classification to assess retrospective environmental exposures to pesticides in epidemiological studies. Revue d’Épidémiologie et de Santé Publique, 66:S429, doi:10.1016/j.respe.2018.05.529. Search in Google Scholar

Fernandez, L. M. (2022). A mission over time: Preserving and disseminating historical aerial images guarded by the National Geographic Institute (IGN) of Spain. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Feurer, D. and Vinatier, F. (2018). Joining multi-epoch archival aerial images in a single SfM block allows 3-D change detection with almost exclusively image information. ISPRS Journal of Photogrammetry and Remote Sensing, 146:495–506, doi:10.1016/j.isprsjprs.2018.10.016. Search in Google Scholar

Fieber, K. D., Mills, J. P., Miller, P. E., Clarke, L., Ireland, L., and Fox, A. J. (2018). Rigorous 3D change determination in Antarctic Peninsula glaciers from stereo WorldView-2 and archival aerial imagery. Remote Sensing of Environment, 205:18–31, doi:10.1016/j.rse.2017.10.042. Search in Google Scholar

Fleischer, F., Haas, F., Altmann, M., Rom, J., Ressl, C., and Becht, M. (2023). Glaciogenic periglacial landform in the making—geomorphological evolution of a rockfall on a small glacier in the Horlachtal, Stubai Alps, Austria. Remote Sensing, 15(6):1472, doi:10.3390/rs15061472. Search in Google Scholar

Ginzler, C. and Hobi, M. (2015). Countrywide stereo-image matching for updating digital surface models in the framework of the Swiss National Forest Inventory. Remote Sensing, 7(4):4343–4370, doi:10.3390/rs70404343. Search in Google Scholar

Giordano, S. and Bris, A. L. (2019). Towards fully automatic orthophoto and DSM generation. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Giordano, S., Le Bris, A., and Mallet, C. (2018). Toward automatic georeferencing of archival aerial photogram-metric surveys. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV–2:105–112, doi:10.5194/isprs-annals-iv-2-105-2018. Search in Google Scholar

Giordano, S. and Mallet, C. (2019a). Archiving and geoprocessing of historical aerial images. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Giordano, S. and Mallet, C. (2019b). Archiving and geoprocessing of historical aerial images: Current status in Europe. Technical Report 70, EuroSDR Official Publication. Search in Google Scholar

Gomez, C., Hayakawa, Y., and Obanawa, H. (2015). A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology, 242:11–20, doi:10.1016/j.geomorph.2015.02.021. Search in Google Scholar

Gonçalves, J. A. (2016). Automatic orientation and mosaicking of archived aerial photography using Structure from Motion. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-3/W4:123–126, doi:10.5194/isprs-archives-xl-3-w4-123-2016. Search in Google Scholar

Grottoli, E., Biausque, M., Rogers, D., Jackson, D. W., and Cooper, J. A. G. (2020). Structure-from-motion-derived digital surface models from historical aerial photographs: A new 3D application for coastal dune monitoring. Remote Sensing, 13(1):95, doi:10.3390/rs13010095. Search in Google Scholar

Haala, N., Hastedt, H., Wolf, K., Ressl, C., and Baltrusch, S. (2010). Digital photogrammetric camera evaluation generation of digital elevation models. Photogrammetrie-Fernerkundung-Geoinformation, pages 99–115, doi:10.1127/1432-8364/2010/0043. Search in Google Scholar

Heisig, H. and Simmen, J.-L. (2021). Re-engineering the past: Countrywide geo-referencing of archival aerial imagery. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 89(6):487–503, doi:10.1007/s41064-021-00162-z. Search in Google Scholar

Heller, R. C., Doverspike, G., and Aldrich, R. (1964). Identification of Tree Species on Large-scale Panchromatic and Color Aerial Photographs. US Department of Agriculture, Forest Service, Agriculture Handbook No. 261. Search in Google Scholar

Höhle, J. and Höhle, M. (2009). Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4):398–406, doi:10.1016/j.isprsjprs.2009.02.003. Search in Google Scholar

Hirschmüller, H. (2011). Semi-global matching-motivation, developments and applications. In Photogrammetric Week 11, pages 173–184. Wichmann. Search in Google Scholar

Hodač, J. and Zemánková, A. (2018). Historical orthophotos created on base of single photos-specifics of processing. Stavební obzor-Civil Engineering Journal, 27(3), doi:10.14311/CEJ.2018.03.0034. Search in Google Scholar

Hong, X. and Roosevelt, C. H. (2023). Orthorectification of large datasets of multi-scale archival aerial imagery: A case study from Türkiye. Journal of Geovisualization and Spatial Analysis, 7(2):23, doi:10.1007/s41651-023-00153-1. Search in Google Scholar

Honkavaara, E., Litkey, P., and Nurminen, K. (2013). Automatic storm damage detection in forests using high-altitude photogrammetric imagery. Remote Sensing, 5(3):1405–1424, doi:10.3390/rs5031405. Search in Google Scholar

Iizuka, S., Simo-Serra, E., and Ishikawa, H. (2016). Let there be color! Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Transactions on Graphics (ToG), 35(4):1–11, doi:10.1145/2897824.292597. Search in Google Scholar

Ishiguro, S., Yamano, H., and Oguma, H. (2016). Evaluation of DSMs generated from multi-temporal aerial photographs using emerging structure from motion-multi-view stereo technology. Geomorphology, 268:64–71, doi:10.1016/j.geomorph.2016.05.029. Search in Google Scholar

Ishii, R., Carbonneau, P., and Miyamoto, H. (2021). Colorisation of archival aerial imagery using deep learning. In EGU General Assembly Conference Abstracts, pages EGU21–11925. doi:10.5194/egusphere-egu21-11925. Search in Google Scholar

Jabrane, N. and Heisig, H. (2022). Bringing the Swiss Landscape Memory to Life. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Jauhiainen, S., Holopainen, M., and Rasinmäki, A. (2007). Monitoring peatland vegetation by means of digitized aerial photographs. Scandinavian Journal of Forest Research, 22(2):168–177, doi:10.1080/02827580701217620. Search in Google Scholar

Karel, W. (2022). Implicit/deep georeferencing of WWII aerial reconnaissance images. In 2nd EuroSDR Workshop on “Geo-processing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Karwel, A. K. and Markiewicz, J. (2022). The methodology of the archival aerial image orientation based on the SfM method. Sensors and Machine Learning Applications, 1(2), doi:10.55627/smla.001.02.0015. Search in Google Scholar

Kervyn, F. (2022). RMCA’s historical aerial photographs of central Africa: The collection, its management and its potential for environmental studies. In 2nd EuroSDR Workshop on “Geo-processing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Kim, J. S., Miller, C. C., and Bethel, J. (2010). Automated georeferencing of historic aerial photography. Journal of Terrestrial Observation, 2(1):6. Search in Google Scholar

Knuth, F. (2022). Historical Structure from Motion (HSfM): Automated processing of historical aerial photographs for long-term geodetic change analysis. Search in Google Scholar

Knuth, F., Shean, D., Bhushan, S., Schwat, E., Alexandrov, O., McNeil, C., Dehecq, A., Florentine, C., and O’Neel, S. (2023). Historical Structure from Motion (HSfM): Automated processing of historical aerial photographs for long-term topographic change analysis. Remote Sensing of Environment, 285:113379, doi:10.1016/j.rse.2022.113379. Search in Google Scholar

Korpela, I. (2006). Geometrically accurate time series of archived aerial images and airborne lidar data in a forest environment. Silva Fennica, 40(1):109. Search in Google Scholar

Kostrzewa, A., Farella, E. M., Morelli, L., Ostrowski, W., Remondino, F., and Bakuła, K. (2024). Digitizing historical aerial images: Evaluation of the effects of scanning quality on aerial triangulation and dense image matching. Applied Sciences, 14(9):3635, doi:10.3390/app14093635. Search in Google Scholar

Kruse, C. (2019). Marked point processes for the automatic detection of bomb craters in aerial wartime images. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Kruse, C., Rottensteiner, F., and Heipke, C. (2019). Marked point processes for the automatic detection of bomb craters in aerial wartime images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; 42-2/W13, 42(2/W13):51–60, doi:10.5194/isprs-archives-XLII-2-W13-51-2019. Search in Google Scholar

Kuna, J. (2022). The orthophotomap of Lublin 1944: from photographs to map application – idea, methods, contemporary challenges of processing and publishing archival aerial photographs. Polish Cartographical Review, 54(1):123–142, doi:10.2478/pcr-2022-0009. Search in Google Scholar

Kupidura, P., Osińska-Skotak, K., Lesisz, K., and Podkowa, A. (2019). The efficacy analysis of determining the wooded and shrubbed area based on archival aerial imagery using texture analysis. ISPRS International Journal of Geo-Information, 8(10):450, doi:10.3390/ijgi8100450. Search in Google Scholar

Kurczyński, Z. (1997). Zdjęcia lotnicze dla obszaru Polski real-izowane w ramach programu modernizacji krajowego systemu informacji o terenie (aerial photos for the area of Poland carried out as part of the modernization program of the national terrain information system). Archiwum Fotogrametrii, Kartografii i Teledetekcji, 6:31–44. Search in Google Scholar

Kurczyński, Z. (2014). Fotogrametria (Photogrammetry). Wydawnictwo Naukowe PWN SA. Search in Google Scholar

Kurczyński, Z. and Bakuła, K. (2013). Generowanie referencyjnego numerycznego modelu terenu o zasięgu krajowym w oparciu o lotnicze skanowanie laserowe w projekcie ISOK (Generating a reference digital terrain model with national scope based on airborne laser scanning in the ISOK project). Archiwum Fotogrametrii, Kartografii i Teledetekcji, pages 59–68. Search in Google Scholar

Larsson, G., Maire, M., and Shakhnarovich, G. (2016). Learning representations for automatic colorization. In Leibe, B., Matas, J., Sebe, N., and Welling, M., editors, Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 577–593. Springer, doi:10.1007/978-3-319-46493-0_35. Search in Google Scholar

Le Bris, A. (2022). Geometric and radiometric processing of historical aerial photogrammetric campaigns. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Le Bris, A., Giordano, S., and Mallet, C. (2020). CNN semantic segmentation to retrieve past land cover out of historical orthoimages and DSM: First experiments. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2–2020:1013–1019, doi:10.5194/isprs-annals-v-2-2020-1013-2020. Search in Google Scholar

Lelégard, L., Le Bris, A., and Giordano, S. (2020). Correction of systematic radiometric inhomogeneity in scanned aerial campaigns using principal component analysis. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2–2020:871–876, doi:10.5194/isprs-annals-v-2-2020-871-2020. Search in Google Scholar

Lisenbarth, A. (1991). Działalność instytucji i komórek fotogrametrycznych w Polsce (1921–1990) (Activities of photogrammetric institutions and cells in Poland (1921–1990)). 60-lecie Polskiego Towarzystwa fotogrametrycznego, 1:63–76. Search in Google Scholar

Lisenbarth, A. (2000). Udział polskich fotogrametrów w rozwoju metod i technik fotogrametrycznych (1911–2000) (Participation of Polish photogrammeters in the development of photogrammetric methods and techniques (1911–2000)). Archiwum Fotogrametrii, Kartografii i Teledetekcji, 10:5–12. Search in Google Scholar

Luman, D. E., Stohr, C., and Hunt, L. (1997). Digital reproduction of historical aerial photographic prints for preserving a deteriorating archive. Photogrammetric engineering and remote sensing, 63(10):1171–1179. Search in Google Scholar

Lydersen, J. M. and Collins, B. M. (2018). Change in vegetation patterns over a large forested landscape based on historical and contemporary aerial photography. Ecosystems, 21(7):1348–1363, doi:10.1007/s10021-018-0225-5. Search in Google Scholar

Maiwald, F., Feurer, D., and Eltner, A. (2023). Solving photogrammetric cold cases using AI-based image matching: New potential for monitoring the past with historical aerial images. ISPRS Journal of Photogrammetry and Remote Sensing, 206:184–200, doi:10.1016/j.isprsjprs.2023.11.008. Search in Google Scholar

Mallet, C. and Le Bris, A. (2020). Current challenges in operational very high resolution land-cover mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020:703–710, doi:10.5194/isprs-archives-xliii-b2-2020-703-2020. Search in Google Scholar

Marty, M., Waser, L. T., and Ginzler, C. (2022). Country wide digital vegetation height models from historical stereo imagery for Switzerland. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Maurya, L., Lohchab, V., Kumar Mahapatra, P., and Abonyi, J. (2022). Contrast and brightness balance in image enhancement using Cuckoo Search – optimized image fusion. Journal of King Saud University - Computer and Information Sciences, 34(9):7247–7258, doi:10.1016/j.jksuci.2021.07.008. Search in Google Scholar

Mboga, N., D’Aronco, S., Grippa, T., Pelletier, C., Georganos, S., Vanhuysse, S., Wolff, E., Smets, B., Dewitte, O., Lennert, M., and Wegner, J. D. (2021). Domain adaptation for semantic segmentation of historical panchromatic orthomosaics in Central Africa. ISPRS International Journal of Geo-Information, 10(8):523, doi:10.3390/ijgi10080523. Search in Google Scholar

Mboga, N., Grippa, T., Georganos, S., Vanhuysse, S., Smets, B., Dewitte, O., Wolff, E., and Lennert, M. (2020). Fully convolutional networks for land cover classification from historical panchromatic aerial photographs. ISPRS Journal of Photogrammetry and Remote Sensing, 167:385–395, doi:10.1016/j.isprsjprs.2020.07.005. Search in Google Scholar

Meixner, P. (2019). Historical orthophoto of Prague 1945. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Meixner, P. (2022). Phase one scan station vs. high precision photogrammetric scanners: Practical experience in performing aerial triangulation in everyday production environment. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Meixner, P. and Eckstein, M. (2016). Multi-temporal analysis of WWII reconnaissance photos. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41:973–978, doi:10.5194/isprs-archives-XLIB8-973-2016. Search in Google Scholar

Micheletti, N., Lane, S. N., and Chandler, J. H. (2015). Application of archival aerial photogrammetry to quantify climate forcing of alpine landscapes. The photogrammetric record, 30(150):143–165, doi:10.1111/phor.12099. Search in Google Scholar

Miller, P., Mills, J., Edwards, S., Bryan, P., Marsh, S., Mitchell, H., and Hobbs, P. (2008). A robust surface matching technique for coastal geohazard assessment and management. ISPRS Journal of Photogrammetry and Remote Sensing, 63(5):529–542, doi:10.1016/j.isprsjprs.2008.02.003. Search in Google Scholar

Mitrovic, M., Cvijetinovic, Z., and Mihajlovic, D. (2004). Procedures and experiences on using desktop scanner for orthophoto production. In ISPRS 2004 commission IV-Geo-Imagery bridging continents. XXth ISPRS congress, Istanbul, Turkey, pages 53–58. Search in Google Scholar

Mölg, N. and Bolch, T. (2017). Structure-from-Motion using historical aerial images to analyse changes in glacier surface elevation. Remote Sensing, 9(10):1021, doi:10.3390/rs9101021. Search in Google Scholar

Myklebust, I. and Groesz, F. (2019). Using point clouds from historical imagery for estimating site index in forestry. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Nebiker, S., Lack, N., and Deuber, M. (2014). Building change detection from historical aerial photographs using dense image matching and object-based image analysis. Remote Sensing, 6(9):8310–8336, doi:10.3390/rs6098310. Search in Google Scholar

Nielsen, M. and Dindorp, A. (2022). 75 years of historical aerial images from Denmark and Greenland – The process from dusty shelves to website. In 2nd EuroSDR Workshop on “Geo-processing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Norin, M. and Klitkou, G. (2022). Actualizing history. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Olędzki, J. (2009). Początki teledetekcji środowiska w Polsce (The beginnings of remote sensing of the environment in Poland). Teledetekcja środowiska, 41:5–22. Search in Google Scholar

Osińska-Skotak, K., Bakuła, K., Jełowicki, Ł., and Podkowa, A. (2019). Using canopy height model obtained with dense image matching of archival photogrammetric datasets in area analysis of secondary succession. Remote Sensing, 11(18):2182, doi:10.3390/rs11182182. Search in Google Scholar

Osińska-Skotak, K. and Rączkowski, W. (2023). Zobrazowania satelitarne (Satellite imagery). In Metody teledetekcyjne dla archeologów, pages 68–114. Narodowy Instytut Dziedzictwa. Search in Google Scholar

Ozdemir, E. and Remondino, F. (2019). Machine learning methods applied to WWII aerial images. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Pasik, M., Bakuła, K., Różycki, S., Ostrowski, W., Kowalska, M. E., Fijałkowska, A., Rajner, M., Łapiński, S., Sobota, I., Kejna, M., and Osińska-Skotak, K. (2021). Glacier geometry changes in the western shore of Admiralty Bay, King George Island over the last decades. Sensors, 21(4):1532, doi:10.3390/s21041532. Search in Google Scholar

Peppa, M., Mills, J., Fieber, K., Haynes, I., Turner, S., Turner, A., Douglas, M., and Bryan, P. (2018). Archaeological feature detection from archive aerial photography with a SfMMVS and image enhancement pipeline. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42:869–875, doi:10.5194/isprs-archives-XLII-2-869-2018. Search in Google Scholar

Persia, M., Barca, E., Greco, R., Marzulli, M. I., and Tartarino, P. (2020). Archival aerial images georeferencing: A geostatistically-based approach for improving orthophoto accuracy with minimal number of ground control points. Remote Sensing, 12(14):2232, doi:10.3390/rs12142232. Search in Google Scholar

Piermattei, L. (2022). Review on the processing and application of historical aerial images in the geosciences. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Pinto, A. T., Gonçalves, J. A., Beja, P., and Pradinho Honrado, J. (2019). From archived historical aerial imagery to informative orthophotos: A framework for retrieving the past in long-term socioecological research. Remote Sensing, 11(11):1388, doi:10.3390/rs11111388. Search in Google Scholar

Poli, D., Casarotto, C., Strudl, M., Bollmann, E., Moe, K., and Legat, K. (2020). Use of historical aerial images for 3D modelling of glaciers in the Province of Trento. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020:1151–1158, doi:10.5194/isprs-archives-xliii-b2-2020-1151-2020. Search in Google Scholar

Poli, D., Strudl, M., Moe, K., Baumann, F., Bollmann, E., and Casarotto, C. (2019). 3D glacier monitoring with historical aerial images – From 1953 to today. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Poterek, Q., Herrault, P.-A., Skupinski, G., and Sheeren, D. (2020). Deep learning for automatic colorization of legacy grayscale aerial photographs. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:2899–2915, doi:10.1109/JSTARS.2020.2992082. Search in Google Scholar

Price, B., Waser, L. T., Wang, Z., Marty, M., Ginzler, C., and Zellweger, F. (2020). Predicting biomass dynamics at the national extent from digital aerial photogrammetry. International Journal of Applied Earth Observation and Geoinformation, 90:102116, doi:10.1016/j.jag.2020.102116. Search in Google Scholar

Pulighe, G. and Fava, F. (2013). DEM extraction from archive aerial photos: accuracy assessment in areas of complex topography. European Journal of Remote Sensing, 46(1):363–378, doi:10.5721/EuJRS20134621. Search in Google Scholar

Pulkkinen, M., Ginzler, C., Traub, B., and Lanz, A. (2018). Stereo-imagery-based post-stratification by regression-tree modelling in Swiss National Forest Inventory. Remote sensing of environment, 213:182–194, doi:10.1016/j.rse.2018.04.052. Search in Google Scholar

Ratajczak, R., Crispim-Junior, C. F., Faure, É., Fervers, B., and Tougne, L. (2019a). Automatic land cover reconstruction from historical aerial images: An evaluation of features extraction and classification algorithms. IEEE Transactions on Image Processing, 28(7):3357–3371, doi:10.1109/TIP.2019.2896492. Search in Google Scholar

Ratajczak, R., Crispim-Junior, C. F., Faure, E., Fervers, B., and Tougne, L. (2019b). Toward an unsupervised colorization framework for historical land use classification. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, pages 2678–2681. IEEE, doi:10.1109/IGARSS.2019.8898438. Search in Google Scholar

Rault, C., Dewez, T., and Aunay, B. (2020). Structure-from-motion processing of aerial archive photographs: Sensitivity analyses pave the way for quantifying geomorphological changes since 1978 in La Reunion Island. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2:773–780, doi:10.5194/isprs-annals-V-2-2020-773-2020. Search in Google Scholar

Rault, C., Dewez, T. J., Belon, R., Ayichemi, A., and Aunay, B. (2019). Serial processing of historical aerial photographs: A story telling the geomorphic impact of cyclones on Reunion Island (Indian Ocean). In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Rault, C., Thiery, Y., Chaput, M., Reninger, P.-A., Dewez, T., Michon, L., Samyn, K., and Aunay, B. (2022). Landslide processes involved in volcano dismantling from past to present: The remarkable open-air laboratory of the Cirque de Salazie (Reunion Island). Journal of Geophysical Research: Earth Surface, 127(5):e2021JF006257, doi:10.1029/2021JF006257. Search in Google Scholar

Redecker, A. P. (2008). Historical aerial photographs and digital photogrammetry for impact analyses on derelict land sites in human settlement areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 37:5–10. Search in Google Scholar

Redweik, P., Garzón, V., and Pereira, T. s. (2016). Recovery of stereo aerial coverage from 1934 and 1938 into the digital era. The Photogrammetric Record, 31(153):9–28, doi:10.1111/phor.12137. Search in Google Scholar

Redweik, P., Roque, D., Marques, A., Matildes, R., and Marques, F. (2009). Recovering Portugal aerial images repository. International Archives of Photogrammetry and Remote Sensing, 38:1–4. Search in Google Scholar

Różycki, S., Karwel, A. K., and Kurczyński, Z. (2023). German extermination camps on WWII reconnaissance photographs. orthorectification process for archival aerial images of cultural heritage sites. Remote Sensing, 15(10):2587, doi:10.3390/rs15102587. Search in Google Scholar

Salach, A. (2017). SAPC – Application for adapting scanned analogue photographs to use them in Structure from Motion technology. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1/W1:197–204, doi:10.5194/isprs-archives-xlii-1-w1-197-2017. Search in Google Scholar

Santangelo, M., Zhang, L., Rupnik, E., Deseilligny, M. P., and Cardinali, M. (2022). Landslide evolution pattern revealed by multi-temporal DSMS obtained from historical aerial images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022:1085–1092, doi:10.5194/isprs-archives-xliii-b2-2022-1085-2022. Search in Google Scholar

Schulz, J., Cramer, M., and Herbst, T. (2021). Evaluation of phase one scan station for analogue aerial image digitisation. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 89(5):461–473, doi:10.1007/s41064-021-00174-9. Search in Google Scholar

Schulz, J. and Herbst, T. (2022). Digitisation of historic aerial images in Baden-Württemberg investigating geometric resolution and accuracy of current digitsation systems. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Seccaroni, S., Santangelo, M., Marchesini, I., Mondini, A. C., and Cardinali, M. (2018). High resolution historical topography: Getting more from archival aerial photographs. In Proceedings, volume 2, page 347. MDPI, doi:10.3390/ecrs-2-05160. Search in Google Scholar

Seo, D. K., Kim, Y. H., Eo, Y. D., and Park, W. Y. (2018). Learning-based colorization of grayscale aerial images using random forest regression. Applied Sciences, 8(8):1269, doi:10.3390/app8081269. Search in Google Scholar

Sevara, C. (2016). Capturing the past for the future: An evaluation of the effect of geometric scan deformities on the performance of aerial archival media in image-based modelling environments. Archaeological Prospection, 23(4):325–334, doi:10.1002/arp.1539. Search in Google Scholar

Sevara, C., Verhoeven, G., Doneus, M., and Draganits, E. (2018). Surfaces from the visual past: Recovering high-resolution terrain data from historic aerial imagery for multitemporal landscape analysis. Journal of archaeological method and theory, 25:611–642, doi:10.1007/s10816-017-9348-9. Search in Google Scholar

Shepherd, E., Ceraudo, S., Salerno, G., and Remondino, F. (2019). Analog/digital image processing of historical aerial imagery in the Italian National Photographic Aerial Archive (AFN-ICCD). In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Spalluto, L., Fiore, A., Miccoli, M. N., and Parise, M. (2021). Activity maps of multi-source mudslides from the Daunia Apennines (Apulia, southern Italy). Natural Hazards, 106(1):277–301, doi:10.1007/s11069-020-04461-3. Search in Google Scholar

Stark, M., Rom, J., Haas, F., Piermattei, L., Fleischer, F., Alt-mann, M., and Becht, M. (2022). Long-term assessment of terrain changes and calculation of erosion rates in an alpine catchment based on SfM-MVS processing of historical aerial images. How camera information and processing strategy affect quantitative analysis. Journal of Geomorphology, 1(1):43–77, doi:10.1127/jgeomorphology/2022/0755. Search in Google Scholar

Su, J.-W., Chu, H.-K., and Huang, J.-B. (2020). Instance-aware image colorization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7968–7977. Search in Google Scholar

Tanaka, S., Miyamoto, H., Ishii, R., and Carbonneau, P. (2022). Comparison of deep learning methods for colorizing historical aerial imagery. In EGU General Assembly Conference Abstracts, pages EGU22–7686. doi:10.5194/egusphere-egu22-7686. Search in Google Scholar

Thomas, R. (2022). Rapid photogrammetric scanning and processing of aerial film archives. In 2nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, Rome, Italy, 5–6 December 2022. Search in Google Scholar

Truquin, P. (2019). The digitization of IGN’s photo/cartographic archives and the web service “Remonter le temps”. In 1nd EuroSDR Workshop on “Geoprocessing and Archiving of Historical Aerial Images”, IGN, Paris, France, 3–4 June 2019. Search in Google Scholar

Waser, L. T., Fischer, C., Wang, Z., and Ginzler, C. (2015). Wall-to-wall forest mapping based on digital surface models from image-based point clouds and a NFI forest definition. Forests, 6(12):4510–4528, doi:10.3390/f6124386. Search in Google Scholar

Wężyk, P. and Matyja, W. (2007). Określenie dynamiki zmian w Puszczy Niepołomickiej na podstawie ortofotomapy wygenerowanej z archiwalnych zdjęć lotniczych z 1949 roku (Determining the dynamics of changes in the Niepołomice Forest based on an orthophotomap generated from archival aerial photos from 1949). Archiwum Fotogrametrii, Kartografii i Teledetekcji, 17:801–809. Search in Google Scholar

Wójcik, S. (1991). Osiągniecia fotogrametrii wojskowej w okresie 1920–1990 (Achievements of military photogrammetry in the period 1920–1990). Archiwum Fotogrametrii, Kartografii i Teledetekcji, 60-lecie Polskiego Towarzystwa Fotogrametrycznego, 1:51–62. Search in Google Scholar

Zhang, L., Rupnik, E., and Pierrot-Deseilligny, M. (2020). Guided feature matching for multi-epoch historical image blocks pose estimation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2–2020:127–134, doi:10.5194/isprs-annals-v-2-2020-127-2020. Search in Google Scholar

Zhang, L., Rupnik, E., and Pierrot-Deseilligny, M. (2021). Feature matching for multi-epoch historical aerial images. ISPRS Journal of Photogrammetry and Remote Sensing, 182:176–189, doi:10.1016/j.isprsjprs.2021.10.008. Search in Google Scholar

Zhang, R., Isola, P., and Efros, A. A. (2016). Colorful image colorization. In Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, volume Part III 14, pages 649–666. Search in Google Scholar

eISSN:
2391-8152
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Computer Sciences, other, Geosciences, Geodesy, Cartography and Photogrammetry