Cite

Act (1995). Act of 3 February 1995 on Protection of Agricultural and Forest Land. Act. Journal of Laws, 2004, no. 121, item 1266, Poland. Search in Google Scholar

Act (2003). Act of 27 March 2003 on Spatial Planning and Land Development. Act. Journal of Laws, 2023, item 977, 1506, 1597, 1688, 1890, 2029, 2739, Poland. Search in Google Scholar

APSVI (2023). Agricultural Production Space Valorization Index. http://www.onw.iung.pulawy.pl/specyficzne/wwrpp, Access 23 October 2023. Search in Google Scholar

Ayele, G. T., Demissie, S. S., Jemberrie, M. A., Jeong, J., and Hamilton, D. P. (2019). Terrain effects on the spatial variability of soil physical and chemical properties. Soil Systems, 4(1):1, doi:10.3390/soilsystems4010001. Search in Google Scholar

Baude, M., Meyer, B. C., and Schindewolf, M. (2019). Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Science of The Total Environment, 659:1526–1536, doi:10.1016/j.scitotenv.2018.12.455. Search in Google Scholar

Baveye, P. C., Baveye, J., and Gowdy, J. (2016). Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Frontiers in Environmental Science, 4, doi:10.3389/fenvs.2016.00041. Search in Google Scholar

Behrens, T. and Scholten, T. (2006). Digital soil mapping in Germany – a review. Journal of Plant Nutrition and Soil Science, 169(3):434–443, doi:10.1002/jpln.200521962. Search in Google Scholar

Bielska, A. and Jaroszewicz, J. (2012). Przegląd metod wykorzystujących funkcje rozmyte i analizy wielokryterialne do opracowania cyfrowych map glebowo-rolniczych (A review of methods using fuzzy functions and multi-criteria analyzes to develop digital soil and agricultural maps). Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum, 11(2):5–15. Search in Google Scholar

Biggs, E. M., Bruce, E., Boruff, B., Duncan, J. M., Horsley, J., Pauli, N., McNeill, K., Neef, A., Van Ogtrop, F., Curnow, J., Ha-worth, B., Duce, S., and Imanari, Y. (2015). Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environmental Science & Policy, 54:389–397, doi:10.1016/j.envsci.2015.08.002. Search in Google Scholar

Blum, W. E. H. (2005). Functions of soil for society and the environment. Reviews in Environmental Science and Bio/Technology, 4(3):75–79, doi:10.1007/s11157-005-2236-x. Search in Google Scholar

Borkowski, A. and Łuczkiewicz, N. (2023). Landscape Information Model (LIM): A case study of Ołtarzew Park in Ożarów Mazowiecki municipality. Budownictwo i Architektura, 22(2):041–056, doi:10.35784/bud-arch.3547. Search in Google Scholar

Borkowski, A. S. (2019). File hygiene and BIM models restrictions. Trends in Civil Engineering and its Architecture, 3(3), doi:10.32474/tceia.2019.03.000164. Search in Google Scholar

Borkowski, A. S., Kochański, Ł., and Wyszomirski, M. (2022). A case study on Building Information (BIM) and Land Information (LIM) Models including geospatial data. Geomatics and Environmental Engineering, 17(1):19–34, doi:10.7494/geom.2023.17.1.19. Search in Google Scholar

Borkowski, A. S. and Wyszomirski, M. (2021). Landscape Information Modelling: an important aspect of bim modelling, examples of cubature, infrastructure, and planning projects. Geomatics, Landmanagement and Landscape, (1):7–22, doi:10.15576/GLL/2021.1.7. Search in Google Scholar

Carré, F., McBratney, A. B., Mayr, T., and Montanarella, L. (2007). Digital soil assessments: Beyond DSM. Geoderma, 142(1-2):69–79, doi:10.1016/j.geoderma.2007.08.015. Search in Google Scholar

Du Preez, C. C., Van Huyssteen, C. W., and Mnkeni, P. N. (2011). Land use and soil organic matter in South Africa 1: A review on spatial variability and the influence of rangeland stock production. South African Journal of Science, 107(5/6), doi:10.4102/sajs.v107i5/6.354. Search in Google Scholar

El Baroudy, A. (2016). Mapping and evaluating land suitability using a GIS-based model. CATENA, 140:96–104, doi:10.1016/j.catena.2015.12.010. Search in Google Scholar

European Commission (2023). Proposal for a Directive of the European Parliament and of the Council on Soil Monitoring and Resilience (Soil Monitoring Law). COM(2023) 416 final 2023/0232 (COD), Brussels. Search in Google Scholar

European Environment Agency (2000). Down to earth: Soil degradation and sustainable development in Europe. A challenge for the 21st century. Environmental issue series, No 16, https://www.eea.europa.eu/publications/Environmental_issue_series_16. Search in Google Scholar

Florinsky, I. V., McMahon, S., and Burton, D. L. (2004). Topographic control of soil microbial activity: A case study of denitrifiers. Geoderma, 119(1-2):33–53, doi:10.1016/S0016-7061(03)00224-6. Search in Google Scholar

Gawronski, K., Kuryltsiv, R., and Hernik, J. (2013). Racjonalne użytkowanie oraz ochrona gruntów rolnych w polsce i na ukrainie (Rational usage and protection of farmlands in Poland and Ukraine). Infrastruktura i Ekologia Terenów Wiejskich, (3/III):17–30. Search in Google Scholar

Henry, A., Mabit, L., Jaramillo, R. E., Cartagena, Y., and Lynch, J. P. (2012). Land use effects on erosion and carbon storage of the Río Chimbo watershed, Ecuador. Plant and Soil, 367(1–2):477–491, doi:10.1007/s11104-012-1478-y. Search in Google Scholar

Holling, C. S. (1973). Resilience and stability of ecological systems. Annual review of ecology and systematics, 4(1):1–23, doi:10.1146/annurev.es.04.110173.000245. Search in Google Scholar

IUSS Working Group World Reference Base (2021). World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition International Union of Soil Sciences (IUSS), Vienna, Austria. Search in Google Scholar

Jadczyszyn, J. and Smreczak, B. (2017). Mapa glebowo-rolnicza w skali 1:25 000 i jej wykorzystanie na potrzeby współczesnego rolnictwa (Soil and agricultural map on a scale of 1: 25,000 and its use for the needs of modern agriculture). Studia i raporty IUNG-PIB, 51(5):9–27. Search in Google Scholar

Jónsson, J. Ö. G., Davíðsdóttir, B., Jónsdóttir, E. M., Kristinsdóttir, S. M., and Ragnarsdóttir, K. V. (2016). Soil indicators for sustainable development: A transdisciplinary approach for indicator development using expert stakeholders. Agriculture, ecosystems & environment, 232:179–189, doi:10.1016/j.agee.2016.08.009. Search in Google Scholar

Kabała, C. (2019). Chernozem (czarnoziem) – soil of the year 2019 in Poland. Origin, classification and use of chernozems in Poland. Soil Science Annual, 70(3):184–192, doi:10.2478/ssa-2019-0016. Search in Google Scholar

Krasowicz, S., Oleszek, W., Horabik, J., Dębicki, R., Jankowiak, J., Stuczyński, T., and Jadczyszyn, J. (2011). Racjonalne gospodarowanie środowiskiem glebowym polski (Rational management of the soil environment in Poland). Polish Journal of Agronomy, 7:43–58. Search in Google Scholar

Kwiatkowska-Malina, J. (2018). Qualitative and quantitative soil organic matter estimation for sustainable soil management. Journal of soils and sediments, 18:2801–2812, doi:10.1007/s11368-017-1891-1. Search in Google Scholar

Kwiatkowska-Malina, J., Bielska, A., and Borkowski, A. S. (2016). Use of data of the geostatistics portal in sustainable rural land development: Two case studies in Poland. Fresenius environmental bulletin, 25(3):775–782. Search in Google Scholar

Kwiatkowska-Malina, J., Bielska, A., and Borkowski, A. S. (2019). Soil maps at a scale of 1: 5000 as a source of soil databases taking soil variability into consideration: A case study from Czermin commune, S Poland. Soil Science Annual, 70(1). Search in Google Scholar

Lal, R. (2014). Soil conservation and ecosystem services. International soil and water conservation research, 2(3):36–47, doi:10.1016/S2095-6339(15)30021-6. Search in Google Scholar

Li, X., McCarty, G. W., Du, L., and Lee, S. (2020). Use of topographic models for mapping soil properties and processes. Soil Systems, 4(2):32, doi:10.3390/soilsystems4020032. Search in Google Scholar

Lourenço, I. B., Guimarães, L. F., Alves, M. B., and Miguez, M. G. (2020). Land as a sustainable resource in city planning: The use of open spaces and drainage systems to structure environmental and urban needs. Journal of Cleaner Production, 276:123096, doi:10.1016/j.jclepro.2020.123096. Search in Google Scholar

Ludwig, M., Wilmes, P., and Schrader, S. (2018). Measuring soil sustainability via soil resilience. Science of The Total Environment, 626:1484–1493, doi:10.1016/j.scitotenv.2017.10.043. Search in Google Scholar

Ma, Y., Minasny, B., Malone, B. P., and Mcbratney, A. B. (2019). Pedology and Digital Soil Mapping (DSM). European Journal of Soil Science, 70(2):216–235, doi:10.1111/ejss.12790. Search in Google Scholar

Mandal, U. K. (2013). Soil suitability analysis for sustainable land use planning in Maheshkhola Watershed, Central Mountain Region, Nepal. The Himalayan Review, 44:71–82. Search in Google Scholar

Martensen, L. (2021). City Information Modeling: The Real-World SimCity. Technical report, https://onekeyresources.milwaukeetool.com/en/city-information-modeling, access: May 2024. Search in Google Scholar

McKenzie, N. and Austin, M. (1993). A quantitative australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation. Geoderma, 57(4):329–355, doi:10.1016/0016-7061(93)90049-q. Search in Google Scholar

McKenzie, N. J. and Ryan, P. J. (1999). Spatial prediction of soil properties using environmental correlation. Geoderma, 89(1–2):67–94, doi:10.1016/s0016-7061(98)00137-2. Search in Google Scholar

Nowak, A. and Tokarczyk, N. (2013). Evaluation of soil resilience to anthropopressure in Łosie village (Lower Beskids Mts) – preliminary results. Ekologia, 32(1), doi:10.2478/eko-2013-0012. Search in Google Scholar

Pham, T. G., Nguyen, H. T., and Kappas, M. (2018). Assessment of soil quality indicators under different agricultural land uses and topographic aspects in Central Vietnam. International Soil and Water Conservation Research, 6(4):280–288, doi:10.1016/j.iswcr.2018.08.001. Search in Google Scholar

Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307(5949):321–326, doi:10.1038/307321a0. Search in Google Scholar

Pindral, S., Kot, R., and Hulisz, P. (2022). The influence of city development on urban pedodiversity. Scientific Reports, 12(1), doi:10.1038/s41598-022-09903-5. Search in Google Scholar

Pindral, S. and Świtoniak, M. (2017). The usefulness of soil-agricultural maps to identify classes of soil truncation. Soil Science Annual, 68(1):2–10, doi:10.1515/ssa-2017-0001. Search in Google Scholar

Rabia, A. H., Neupane, J., Lin, Z., Lewis, K., Cao, G., and Guo, W. (2022). Principles and applications of topography in precision agriculture, pages 143–189. Elsevier, doi:10.1016/bs.agron.2021.08.005. Search in Google Scholar

Radziuk, H. and Świtoniak, M. (2021). Soil erodibility factor (k) in soils under varying stages of truncation. Soil Science Annual, doi:10.37501/soilsa/134621. Search in Google Scholar

Rao, M. N., Waits, D. A., and Neilsen, M. L. (2000). A GIS-based modeling approach for implementation of sustainable farm management practices. Environmental Modelling & Software, 15(8):745–753, doi:10.1016/S1364-8152(00)00032-3. Search in Google Scholar

Rega, C. and Bonifazi, A. (2020). The rise of resilience in spatial planning: A journey through disciplinary boundaries and contested practices. Sustainability, 12(18):7277, doi:10.3390/su12187277. Search in Google Scholar

Rehman, Z. u., Khalid, U., Ijaz, N., Mujtaba, H., Haider, A., Farooq, K., and Ijaz, Z. (2022). Machine learning-based intelligent modeling of hydraulic conductivity of sandy soils considering a wide range of grain sizes. Engineering Geology, 311:106899, doi:10.1016/j.enggeo.2022.106899. Search in Google Scholar

Roostaie, S., Nawari, N., and Kibert, C. J. (2019). Sustainability and resilience: A review of definitions, relationships, and their integration into a combined building assessment framework. Building and Environment, 154:132–144, doi:10.1016/j.buildenv.2019.02.042. Search in Google Scholar

Shahid, S., Taha, F., and Abdelfattah, M. (2013). Developments in Soil Classification, Land Use Planning and Policy Implications: Innovative Thinking of Soil Inventory for Land Use Planning and Management of Land Resources. Springer Netherlands, doi:10.1007/978-94-007-5332-7. Search in Google Scholar

Shevtsova, L., Romanenkov, V., Sirotenko, O., Smith, P., Smith, J. U., Leech, P., Kanzyvaa, S., and Rodionova, V. (2003). Effect of natural and agricultural factors on long-term soil organic matter dynamics in arable soddy-podzolic soils—modeling and observation. Geoderma, 116(1–2):165–189, doi:10.1016/s0016-7061(03)00100-9. Search in Google Scholar

Skłodowski, P. (2014). Kształtowanie i ewolucja gleb (Soil formation and evolution). In Skłodowski, P., editor, Podstawy gleboznawstwa z elementami kartografii gleb (Basics of soil science with elements of soil cartography), pages 22–77. Warsaw University of Technology Publishing House. Search in Google Scholar

Statistics Poland (2021). Statistical Yearbook of Agriculture. Warsaw 2021, https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-rolnictwa-2021,6,15.html. Search in Google Scholar

Strzemski, M., Siuta, J., and Witek, T. (1973). Przydatność rolnicza gleb Polski (Agricultural suitability of Polish soils). Państ. Wydaw. Rolnicze i Leśne. Search in Google Scholar

Warra, H. H., Ahmed, M. A., and Nicolau, M. D. (2015). Impact of land cover changes and topography on soil quality in the Kasso catchment, Bale Mountains of southeastern Ethiopia. Singapore Journal of Tropical Geography, 36(3):357–375, doi:10.1111/sjtg.12124. Search in Google Scholar

Witek, T. and Górski, T. (1977). Przyrodnicza bonitacja rolniczej przestrzeni produkcyjnej w Polsce (Natural assessment of agricultural production space in Poland). Wydawnictwa Geologiczne. Search in Google Scholar

WRB, I.W.G (2014). World Reference Base for Soil Resources 2014. International Soil Classification System For Naming Soils And Creating Legends For Soil Maps. World Soil Resources Report No. 106. FAO, Rome. Search in Google Scholar

Zhang, Y., Ji, W., Saurette, D. D., Easher, T. H., Li, H., Shi, Z., Adamchuk, V. I., and Biswas, A. (2020). Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression kriging. Geoderma, 366:114253, doi:10.1016/j.geoderma.2020.114253. Search in Google Scholar

Zhu, J., Wright, G., Wang, J., and Wang, X. (2018). A critical review of the integration of geographic information system and building information modelling at the data level. ISPRS International Journal of Geo-Information, 7(2):66, doi:10.3390/ijgi7020066. Search in Google Scholar

Zhu, Q. and Lin, H. (2011). Influences of soil, terrain, and crop growth on soil moisture variation from transect to farm scales. Geoderma, 163(1–2):45–54, doi:10.1016/j.geoderma.2011.03.015. Search in Google Scholar

Zieliński, M. and Sobierajewska, J. (2021). The importance of agriculture from areas with especially unfavorable natural conditions in Poland in the context of the European Green Deal. Annals of the Polish Association of Agricultural and Agribusiness Economists, XXIII(3):156–168, doi:10.5604/01.3001.0015.2585. Search in Google Scholar

Świtoniak, M., Mroczek, P., and Bednarek, R. (2016). Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes – Case study: Brodnica and Chełmno Lake Districts (North Poland). CATENA, 137:583–595, doi:10.1016/j.catena.2014.09.005. Search in Google Scholar

eISSN:
2391-8152
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Computer Sciences, other, Geosciences, Geodesy, Cartography and Photogrammetry