Open Access

Pancreatic islets implanted in an irreversible electroporation generated extracellular matrix in the liver


Cite

Background

Pancreatic islet transplantation via infusion through the portal vein, has become an established clinical treatment for patients with type 1 diabetes. Because the engraftment efficiency is low, new approaches for pancreatic islets implantation are sought. The goal of this study is to explore the possibility that a non-thermal irreversible electroporation (NTIRE) decellularized matrix in the liver could be used as an engraftment site for pancreatic islets.

Materials and methods

Pancreatic islets or saline controls were injected at sites pre-treated with NTIRE in the livers of 7 rats, 16 hours after NTIRE treatment. Seven days after the NTIRE treatment, islet graft function was assessed by detecting insulin and glucagon in the liver with immunohistochemistry.

Results

Pancreatic islets implanted into a NTIRE-treated volume of liver became incorporated into the liver parenchyma and produced insulin and glucagon in 2 of the 7 rat livers. Potential reasons for the failure to observe pancreatic islets in the remaining 5/7 rats may include local inflammatory reaction, graft rejection, low numbers of starting islets, timing of implantation.

Conclusions

This study shows that pancreatic islets can become incorporated and function in an NTIRE-generated extracellular matrix niche, albeit the success rate is low. Advances in the field could be achieved by developing a better understanding of the mechanisms of failure and ways to combat these mechanisms.

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology