Open Access

Analysis of the Velocity Changes of the Jakobshavn Glacier Based on SAR Imagery


Cite

Aschwanden A., Fahnestock M.A., Truffer M., Brinkerhoff D.J., Hock R., Khroulev C., Mottram R., Khan A.S., 2019. Contribution of the Greenland Ice Sheet to sea level over the next millennium. Science Advances 5(6). DOI 10.1126/SCIADV.AAV9396.AschwandenA.FahnestockM.A.TrufferM.BrinkerhoffD.J.HockR.KhroulevC.MottramR.KhanA.S.2019Contribution of the Greenland Ice Sheet to sea level over the next millenniumScience Advances5610.1126/SCIADV.AAV9396Open DOISearch in Google Scholar

Cai J., Wang C., Mao X., Wang Q., 2017. An adaptive offset tracking method with SAR images for landslide displacement monitoring. Remote Sensing 9(8): 830.CaiJ.WangC.MaoX.WangQ.2017An adaptive offset tracking method with SAR images for landslide displacement monitoringRemote Sensing9883010.3390/rs9080830Search in Google Scholar

Du W., Liu X., Guo J., Shen Y., Li W., Chang X., 2019. Analysis of the melting glaciers in Southeast Tibet by ALOS-PALSAR data. Terrestrial, Atmospheric and Oceanic Sciences 30: 7–19.DuW.LiuX.GuoJ.ShenY.LiW.ChangX.2019Analysis of the melting glaciers in Southeast Tibet by ALOS-PALSAR dataTerrestrial, Atmospheric and Oceanic Sciences3071910.3319/TAO.2018.07.09.03Search in Google Scholar

ESA. n.d. Sentinel-1 SAR technical guide. Online: https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/ground-range-detected (accessed 11 October 2021).ESAn.d.Sentinel-1 SAR technical guideOnline: https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/ground-range-detected (accessed 11 October 2021).Search in Google Scholar

Fan J., Wang Q., Liu G., Zhang L., Guo Z., Tong L., Peng J., et al., 2019. Monitoring and analyzing mountain glacier surface movement using SAR data and a terrestrial laser scanner: A case study of the Himalayas north slope glacier area. Remote Sensing 11(6): 625.FanJ.WangQ.LiuG.ZhangL.GuoZ.TongL.PengJ.2019Monitoring and analyzing mountain glacier surface movement using SAR data and a terrestrial laser scanner: A case study of the Himalayas north slope glacier areaRemote Sensing11662510.3390/rs11060625Search in Google Scholar

Fang L., Ye Z., Su S., Kang J., Tong X., 2020. Glacier surface motion estimation from SAR intensity images based on subpixel gradient correlation. Sensors 20(16): 4396.FangL.YeZ.SuS.KangJ.TongX.2020Glacier surface motion estimation from SAR intensity images based on subpixel gradient correlationSensors2016439610.3390/s20164396747231832781713Search in Google Scholar

Farness K., Jezek K.C., 2008. Velocity trends for Jakobshavn glacier, Greenland for the years 2000, 2004, 2005, and 2006 including procedure manuals. Byrd Polar Research Center, The Ohio State University. Online: https://kb.osu.edu/handle/1811/54467 (accessed 14 January 2022).FarnessK.JezekK.C.2008Velocity trends for Jakobshavn glacier, Greenland for the years 2000, 2004, 2005, and 2006 including procedure manualsByrd Polar Research Center, The Ohio State UniversityOnline: https://kb.osu.edu/handle/1811/54467 (accessed 14 January 2022).Search in Google Scholar

Friedl P., Weiser F., Fluhrer A., Braun M.H., 2020. Remote sensing of glacier and ice sheet grounding lines: A review. Earth-Science Reviews 201: 102948.FriedlP.WeiserF.FluhrerA.BraunM.H.2020Remote sensing of glacier and ice sheet grounding lines: A reviewEarth-Science Reviews20110294810.1016/j.earscirev.2019.102948Search in Google Scholar

Gatti R.C., Dudko A., Lim A., Velichevskaya A.I., Lushchaeva I.V., Pivovarova A.V., Ventura S., Lumini E., Berruti A., Volkov I.V., 2018. The last 50 years of climate-induced melting of the Maliy Aktru glacier (Altai Mountains, Russia) revealed in a primary ecological succession. Ecology and Evolution 8(15): 7401–7420.GattiR.C.DudkoA.LimA.VelichevskayaA.I.LushchaevaI.V.PivovarovaA.V.VenturaS.LuminiE.BerrutiA.VolkovI.V.2018The last 50 years of climate-induced melting of the Maliy Aktru glacier (Altai Mountains, Russia) revealed in a primary ecological successionEcology and Evolution8157401742010.1002/ece3.4258610616530151159Search in Google Scholar

Golledge N.R., 2020. Long-term projections of sea-level rise from ice sheets. Wiley Interdisciplinary Reviews: Climate Change 11(2): e634.GolledgeN.R.2020Long-term projections of sea-level rise from ice sheetsWiley Interdisciplinary Reviews: Climate Change112e63410.1002/wcc.634Search in Google Scholar

Golledge N.R., Keller E.D., Gomez N., Naughten K.A., Bernales J., Trusel L.D., Edwards T.L., 2019. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566(7742): 65–72.GolledgeN.R.KellerE.D.GomezN.NaughtenK.A.BernalesJ.TruselL.D.EdwardsT.L.2019Global environmental consequences of twenty-first-century ice-sheet meltNature5667742657210.1038/s41586-019-0889-930728520Search in Google Scholar

Gomez R., Arigony-Neto J., De Santis A., Vijay S., Jaña R., Rivera A., 2019. Ice dynamics of union glacier from SAR offset tracking. Global and Planetary Change 174: 1–15.GomezR.Arigony-NetoJ.De SantisA.VijayS.JañaR.RiveraA.2019Ice dynamics of union glacier from SAR offset trackingGlobal and Planetary Change17411510.1016/j.gloplacha.2018.12.012Search in Google Scholar

Guo W., Liu S., Wei J., Bao W., 2013. The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Annals of Glaciology 54(63): 299–310.GuoW.LiuS.WeiJ.BaoW.2013The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensingAnnals of Glaciology546329931010.3189/2013AoG63A495Search in Google Scholar

Hanssen R., 2001. Radar interferometry – Data interpretation and error analysis, 1st edn., Vol. 2. Springer Netherlands, Dordrecht. DOI 10.1007/0-306-47633-9.HanssenR.2001Radar interferometry – Data interpretation and error analysis1st edn.2SpringerNetherlands, Dordrecht10.1007/0-306-47633-9Open DOISearch in Google Scholar

Holland D.M., Thomas R.H., De Young B., Ribergaard M.H., Lyberth B., 2008. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geoscience 1(10): 659–664.HollandD.M.ThomasR.H.De YoungB.RibergaardM.H.LyberthB.2008Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean watersNature Geoscience11065966410.1038/ngeo316Search in Google Scholar

Huang J., Bai Y., Lei S., Deng K., 2020. Time-series SBAS pixel offset tracking method for monitoring three-dimensional deformation in a mining area. IEEE Access 8: 118787–118798.HuangJ.BaiY.LeiS.DengK.2020Time-series SBAS pixel offset tracking method for monitoring three-dimensional deformation in a mining areaIEEE Access811878711879810.1109/ACCESS.2020.3004460Search in Google Scholar

Huang J., Deng K., Fan H., Yan S., 2016. An improved pixel-tracking method for monitoring mining subsidence. Remote Sensing Letters 7(8): 731–740. DOI 10.1080/2150704X.2016.1183177.HuangJ.DengK.FanH.YanS.2016An improved pixel-tracking method for monitoring mining subsidenceRemote Sensing Letters7873174010.1080/2150704X.2016.1183177Open DOISearch in Google Scholar

Hugonnet R., McNabb R., Berthier E., Menounos B., Nuth C., Girod L., Farinotti D., Huss M., Dussaillant I., Brun F., Kääb A., 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature 592(7856): 726–731.HugonnetR.McNabbR.BerthierE.MenounosB.NuthC.GirodL.FarinottiD.HussM.DussaillantI.BrunF.KääbA.2021Accelerated global glacier mass loss in the early twenty-first centuryNature592785672673110.1038/s41586-021-03436-z33911269Search in Google Scholar

Joughin I., Abdalati W., Fahnestock M., 2004. Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier. Nature 432(7017): 608–610.JoughinI.AbdalatiW.FahnestockM.2004Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacierNature432701760861010.1038/nature0313015577906Search in Google Scholar

Joughin I., Shean D.E., Smith B.E., Floricioiu D., 2020. A decade of variability on Jakobshavn Isbræ: Ocean temperatures pace speed through influence on mélange rigidity. Cryosphere 14(1): 211–227.JoughinI.SheanD.E.SmithB.E.FloricioiuD.2020A decade of variability on Jakobshavn Isbræ: Ocean temperatures pace speed through influence on mélange rigidityCryosphere14121122710.5194/tc-14-211-2020719201532355554Search in Google Scholar

Joughin I., Howat I.M., Fahnestock M., Smith B., Krabill W., Alley R.B., Stern H., Truffer M., 2008. Continued evolution of Jakobshavn Isbrae following its rapid speedup. Journal of Geophysical Research: Earth Surface 113(F4): 4006.JoughinI.HowatI.M.FahnestockM.SmithB.KrabillW.AlleyR.B.SternH.TrufferM.2008Continued evolution of Jakobshavn Isbrae following its rapid speedupJournal of Geophysical Research: Earth Surface113F4400610.1029/2008JF001023Search in Google Scholar

Joughin I., Smith B.E., Howat I.M., Scambos T., Moon T., 2010. Greenland flow variability from ice-sheet-wide velocity mapping. Journal of Glaciology 56(197): 415–430.JoughinI.SmithB.E.HowatI.M.ScambosT.MoonT.2010Greenland flow variability from ice-sheet-wide velocity mappingJournal of Glaciology5619741543010.3189/002214310792447734Search in Google Scholar

Joughin I., Smith B.E., Shean D.E., Floricioiu D., 2014. Brief communication: Further summer speedup of Jakobshavn Isbræ. Cryosphere 8(1): 209–214.JoughinI.SmithB.E.SheanD.E.FloricioiuD.2014Brief communication: Further summer speedup of Jakobshavn IsbræCryosphere8120921410.5194/tc-8-209-2014Search in Google Scholar

Joughin I, Howat I.M., Smith B., Scambos T., 2021. MEaSUREs Greenland Ice Velocity: Selected Glacier Site Velocity Maps from InSAR, Version 4. [Jakobshavn Glacier]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. DOI 10.5067/GQZQY2M5507Z.JoughinIHowatI.M.SmithB.ScambosT.2021MEaSUREs Greenland Ice Velocity: Selected Glacier Site Velocity Maps from InSAR, Version 4. [Jakobshavn Glacier]Boulder, Colorado USANASA National Snow and Ice Data Center Distributed Active Archive Center10.5067/GQZQY2M5507ZOpen DOISearch in Google Scholar

Kääb A., Winsvold S.H., Altena B., Nuth C., Nagler T., Wuite J., 2016. Glacier remote sensing using Sentinel-2. Part I: Radiometric and geometric performance, and application to ice velocity. Remote Sensing 8(7): 598. DOI 10.3390/rs8070598.KääbA.WinsvoldS.H.AltenaB.NuthC.NaglerT.WuiteJ.2016Glacier remote sensing using Sentinel-2. Part I: Radiometric and geometric performance, and application to ice velocityRemote Sensing8759810.3390/rs8070598Open DOISearch in Google Scholar

Khazendar A., Fenty I.G., Carroll D., Gardner A., Lee C.M., Fukumori I., Wang O., Zhang H., Seroussi H., Moller D., Noël B.P.Y., van der Broeke M.R., Dinardo S., Willis J., 2019. Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nature Geoscience 12(4): 277–283.KhazendarA.FentyI.G.CarrollD.GardnerA.LeeC.M.FukumoriI.WangO.ZhangH.SeroussiH.MollerD.NoëlB.P.Y.van der BroekeM.R.DinardoS.WillisJ.2019Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean coolsNature Geoscience12427728310.1038/s41561-019-0329-3Search in Google Scholar

King M.D., Howat I.M., Candela S.G., Noh M.J., Jeong S., Noël B.P.Y., van den Broeke M.R., Wouters B., Negrete A., 2020. Dynamic ice loss from the Greenland ice sheet driven by sustained glacier retreat. Communications Earth & Environment 1(1): DOI 10.1038/s43247-020-0001-s.KingM.D.HowatI.M.CandelaS.G.NohM.J.JeongS.NoëlB.P.Y.van den BroekeM.R.WoutersB.NegreteA.2020Dynamic ice loss from the Greenland ice sheet driven by sustained glacier retreatCommunications Earth & Environment1110.1038/s43247-020-0001-sOpen DOISearch in Google Scholar

Lee J.S., Pottier E., 2009. Polarimetric radar imaging: From basics to applications. CRC Press. DOI 10.1201/9781420054989.LeeJ.S.PottierE.2009Polarimetric radar imaging: From basics to applicationsCRC Press10.1201/9781420054989Open DOISearch in Google Scholar

Lei Y., Gardner A., Agram P., 2021. Autonomous repeat image feature tracking (autoRIFT) and its application for tracking ice displacement. Remote Sensing 13(4): 1–20.LeiY.GardnerA.AgramP.2021Autonomous repeat image feature tracking (autoRIFT) and its application for tracking ice displacementRemote Sensing13412010.3390/rs13040749Search in Google Scholar

Lemos A., Shepherd A., McMillan M., Hogg A.E., 2018a. Seasonal variations in the flow of land-terminating glaciers in central-west Greenland using sentinel-1 imagery. Remote Sensing 10(12): 1878.LemosA.ShepherdA.McMillanM.HoggA.E.2018aSeasonal variations in the flow of land-terminating glaciers in central-west Greenland using sentinel-1 imageryRemote Sensing1012187810.3390/rs10121878Search in Google Scholar

Lemos A., Shepherd A., McMillan M., Hogg A.E., Hatton E., Joughin I., 2018b. Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery. Cryosphere 12(6): 2087–2097.LemosA.ShepherdA.McMillanM.HoggA.E.HattonE.JoughinI.2018bIce velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imageryCryosphere1262087209710.5194/tc-12-2087-2018Search in Google Scholar

Luckman A., Murray T., 2005. Seasonal variation in velocity before retreat of Jakobshavn Isbræ, Greenland. Geophysical Research Letters, 32(8): 1–4.LuckmanA.MurrayT.2005Seasonal variation in velocity before retreat of Jakobshavn Isbræ, GreenlandGeophysical Research Letters3281410.1029/2005GL022519Search in Google Scholar

Mahmoud A.M.A., Novellino A., Hussain E., Marsh S., Psimoulis P., Smith M., 2020. The use of SAR offset tracking for detecting sand dune movement in Sudan. Remote Sensing 12(20): 3410.MahmoudA.M.A.NovellinoA.HussainE.MarshS.PsimoulisP.SmithM.2020The use of SAR offset tracking for detecting sand dune movement in SudanRemote Sensing1220341010.3390/rs12203410Search in Google Scholar

Massonnet D., Feigl K.L., 1998. Radar interferometry and its application to changes in the earth's surface. Reviews of Geophysics 36(4): 441–500.MassonnetD.FeiglK.L.1998Radar interferometry and its application to changes in the earth's surfaceReviews of Geophysics36444150010.1029/97RG03139Search in Google Scholar

Mottram R., Stendel M., Box J., Mankoff K., Ahlstrøm A., 2021. What happened to Greenland's ice sheet in 2021? World Economic Forum, 1 December. Online: https://www.weforum.org/agenda/2021/12/greenland-ice-sheet-environment-climate-change/ (accessed 31 January 2022).MottramR.StendelM.BoxJ.MankoffK.AhlstrømA.2021What happened to Greenland's ice sheet in 2021?World Economic Forum1DecemberOnline: https://www.weforum.org/agenda/2021/12/greenland-ice-sheet-environment-climate-change/ (accessed 31 January 2022).Search in Google Scholar

Nagler T., Rott H., Hetzenecker M., Wuite J., Potin P., 2015. The sentinel-1 mission: New opportunities for ice sheet observations. Remote Sensing 7(7): 9371–9389.NaglerT.RottH.HetzeneckerM.WuiteJ.PotinP.2015The sentinel-1 mission: New opportunities for ice sheet observationsRemote Sensing779371938910.3390/rs70709371Search in Google Scholar

Neckel N., Zeising O., Steinhage D., Helm V., Humbert A., 2020. Seasonal observations at 79°N glacier (Greenland) from remote sensing and in situ measurements. Frontiers in Earth Science 8: 142.NeckelN.ZeisingO.SteinhageD.HelmV.HumbertA.2020Seasonal observations at 79°N glacier (Greenland) from remote sensing and in situ measurementsFrontiers in Earth Science814210.3389/feart.2020.00142Search in Google Scholar

Riel B., Minchew B., Joughin I., 2021. Observing traveling waves in glaciers with remote sensing: New flexible time series methods and application to Sermeq Kujalleq (Jakobshavn Isbræ. Greenland. Cryosphere 15(1): 407–429.RielB.MinchewB.JoughinI.2021Observing traveling waves in glaciers with remote sensing: New flexible time series methods and application to Sermeq Kujalleq (Jakobshavn Isbræ. GreenlandCryosphere15140742910.5194/tc-15-407-2021Search in Google Scholar

Rignot E., Mouginot J., Morlighem M., Seroussi H., Scheuchl B., 2014. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters 41(10): 3502–3509.RignotE.MouginotJ.MorlighemM.SeroussiH.ScheuchlB.2014Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011Geophysical Research Letters41103502350910.1002/2014GL060140Search in Google Scholar

Samsonov S., Tiampo K., Cassotto R., 2021. SAR-derived flow velocity and its link to glacier surface elevation change and mass balance. Remote Sensing of Environment, 258: 112343.SamsonovS.TiampoK.CassottoR.2021SAR-derived flow velocity and its link to glacier surface elevation change and mass balanceRemote Sensing of Environment25811234310.1016/j.rse.2021.112343Search in Google Scholar

Schubert A., Faes A., Kääb A., Meier E., 2013. Glacier surface velocity estimation using repeat TerraSAR-X images: Wavelet- vs. correlation-based image matching. ISPRS Journal of Photogrammetry and Remote Sensing 82: 49–62.SchubertA.FaesA.KääbA.MeierE.2013Glacier surface velocity estimation using repeat TerraSAR-X images: Wavelet- vs. correlation-based image matchingISPRS Journal of Photogrammetry and Remote Sensing82496210.1016/j.isprsjprs.2013.04.010Search in Google Scholar

Sohn H.-G., Jezek K.C., van der Veen C.J., 1998. Jakobshavn Glacier, west Greenland: 30 years of spaceborne observations. Geophysical Research Letters 25(14): 2699–2702.SohnH.-G.JezekK.C.van der VeenC.J.1998Jakobshavn Glacier, west Greenland: 30 years of spaceborne observationsGeophysical Research Letters25142699270210.1029/98GL01973Search in Google Scholar

Strozzi T., Luckman A., Murray T., Wegmüller U., Werner C.L. 2002. Glacier motion estimation using SAR offset-tracking procedures. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2384–2391.StrozziT.LuckmanA.MurrayT.WegmüllerU.WernerC.L.2002Glacier motion estimation using SAR offset-tracking proceduresIEEE Transactions on Geoscience and Remote Sensing40112384239110.1109/TGRS.2002.805079Search in Google Scholar

Strozzi T., Paul F., Wiesmann A., Schellenberger T., Kääb A., 2017. Circum-arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sensing 9(9): 947.StrozziT.PaulF.WiesmannA.SchellenbergerT.KääbA.2017Circum-arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017Remote Sensing9994710.3390/rs9090947Search in Google Scholar

Sun L., Muller J.-P., Chen J., 2017. Time series analysis of very slow landslides in the three gorges region through small baseline SAR offset tracking. Remote Sensing 9(12): 1314.SunL.MullerJ.-P.ChenJ.2017Time series analysis of very slow landslides in the three gorges region through small baseline SAR offset trackingRemote Sensing912131410.3390/rs9121314Search in Google Scholar

Torres R., Snoeij P., Geudtner D., Bibby D., Davidson M., Attema E., Potin P., Rommen B., Floury N., Brown M., Traver I.N., Deghaye P., Duesmann B., Rosich B., Miranda N., Bruno C., L’Abbate M., Croci R., Pietropaolo A., Huchler M., Rostan F., 2012. GMES Sentinel-1 mission. Remote Sensing of Environment 120: 9–24.TorresR.SnoeijP.GeudtnerD.BibbyD.DavidsonM.AttemaE.PotinP.RommenB.FlouryN.BrownM.TraverI.N.DeghayeP.DuesmannB.RosichB.MirandaN.BrunoC.L’AbbateM.CrociR.PietropaoloA.HuchlerM.RostanF.2012GMES Sentinel-1 missionRemote Sensing of Environment12092410.1016/j.rse.2011.05.028Search in Google Scholar

Trouvé E., Vasile G., Gay M., Grussenmeyer P., Nicolas J.M., Landes T., Koehl M., Chanussot J., Julea A., 2005. Combining optical and SAR data to monitor temperate glaciers. International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 4, pp. 2637–2640.TrouvéE.VasileG.GayM.GrussenmeyerP.NicolasJ.M.LandesT.KoehlM.ChanussotJ.JuleaA.2005Combining optical and SAR data to monitor temperate glaciersInternational Geoscience and Remote Sensing Symposium (IGARSS)42637264010.1109/IGARSS.2005.1525607Search in Google Scholar

Tuckett P.A., Ely J.C., Sole A.J., Livingstone S.J., Davison B.J., Melchior van Wessem J., Howard J., 2019. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt. Nature Communications 10(1): 1–8.TuckettP.A.ElyJ.C.SoleA.J.LivingstoneS.J.DavisonB.J.Melchior van WessemJ.HowardJ.2019Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface meltNature Communications1011810.1038/s41467-019-12039-2675444431541114Search in Google Scholar

Vizcaino M., Mikolajewicz U., Ziemen F., Rodehacke C.B., Greve R., Van Den Broeke, M.R., 2015. Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300. Geophysical Research Letters 42(10): 3927–3935.VizcainoM.MikolajewiczU.ZiemenF.RodehackeC.B.GreveR.Van Den BroekeM.R.2015Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300Geophysical Research Letters42103927393510.1002/2014GL061142Search in Google Scholar

Willis J., Carroll D., Gardner A., Khazendar A., Wood M., Holland D., 2020. Glacier forecast: Jakobshavn Isbrae primed for thinning and acceleration. Preprint, ResearchSquare, pp. 1–23.WillisJ.CarrollD.GardnerA.KhazendarA.WoodM.HollandD.2020Glacier forecast: Jakobshavn Isbrae primed for thinning and accelerationPreprint, ResearchSquare12310.21203/rs.3.rs-51457/v1Search in Google Scholar

Winsvold S.H., Kääb A., Nuth C., Andreassen L.M., Van Pelt W.J.J., Schellenberger, T., 2018. Using SAR satellite data time series for regional glacier mapping. The Cryosphere 12: 867–890.WinsvoldS.H.KääbA.NuthC.AndreassenL.M.Van PeltW.J.J.SchellenbergerT.2018Using SAR satellite data time series for regional glacier mappingThe Cryosphere1286789010.5194/tc-12-867-2018Search in Google Scholar

Wu Z., Zhang W.H., Liu Y.S., Ren D., Xun J.Z., Bai J.X., 2020. Analysis of the response of glaciers to climate change based on the glacial dynamics model. Environmental Earth Sciences 79(19): 1–10.WuZ.ZhangW.H.LiuY.S.RenD.XunJ.Z.BaiJ.X.2020Analysis of the response of glaciers to climate change based on the glacial dynamics modelEnvironmental Earth Sciences791911010.1007/s12665-020-09188-9Search in Google Scholar

Xu X., Ma C., Lian D., Zhao D., 2020. Inversion and analysis of mining subsidence by integrating DInSAR, offset tracking, and PIM technology. Journal of Sensors 2020(8): 1–15. DOI 10.1155/2020/4136837.XuX.MaC.LianD.ZhaoD.2020Inversion and analysis of mining subsidence by integrating DInSAR, offset tracking, and PIM technologyJournal of Sensors2020811510.1155/2020/4136837Open DOISearch in Google Scholar

Yan S., Guo H., Liu G., Fu W., 2013. Monitoring Muztagh Kuksai glacier surface velocity with L-band SAR data in southwestern Xinjiang, China. Environmental Earth Sciences 70(7): 3175–3184.YanS.GuoH.LiuG.FuW.2013Monitoring Muztagh Kuksai glacier surface velocity with L-band SAR data in southwestern Xinjiang, ChinaEnvironmental Earth Sciences7073175318410.1007/s12665-013-2383-2Search in Google Scholar

Zhao G., Wang L., Deng K., Wang M., Xu Y., Zheng M., Luo Q., 2021. An adaptive offset-tracking method based on deformation gradients and image noises for mining deformation monitoring. Remote Sensing 13(15): 2958.ZhaoG.WangL.DengK.WangM.XuY.ZhengM.LuoQ.2021An adaptive offset-tracking method based on deformation gradients and image noises for mining deformation monitoringRemote Sensing1315295810.3390/rs13152958Search in Google Scholar

Zhou J., Li Z., Guo W., 2014. Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data. Environmental Earth Sciences 71(8): 3581–3592.ZhouJ.LiZ.GuoW.2014Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR dataEnvironmental Earth Sciences7183581359210.1007/s12665-013-2749-5Search in Google Scholar

eISSN:
2081-6383
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, Geography