Open Access

Morphobiometric Characterisation of Carob Tree Pods Cultivated in Algeria and Evaluation of Physicochemical, Nutritional, and Sensory Properties of Their Powders


Cite

AACC (1999). Approved Methods of Analysis, 11th Edition. Method 55-30.01. Particle size index for wheat hardness. Approved November 3, Cereals & Grains Association, St. Paul, MN, USA. https://www.cerealsgrains.org/resources/methods/Pages/default.aspx (accessed 19.03.2024). Search in Google Scholar

Albanell, E., Caja, G., Plaixats, J. (1991). Characteristics of Spanish carob pods and nutritive value of carob kibbles. Options Mediterraneennes, 16, 135–136. Search in Google Scholar

AOAC (1990). Official Methods of Analysis. 15th Edition. Association of Official Analytical Chemists. Washington, DC, USA. Search in Google Scholar

AOAC (1995). Official methods of analysis. 16th Edition. Association of Official Analytical Chemists, Washington, DC, USA. Search in Google Scholar

AOAC (2000). Official methods of analysis. 17th Edition. Association of Official Analytical Chemists, Washington, DC, USA. Search in Google Scholar

Aprotosoaie, A. C, Luca, S. V., Miron, A. (2016). Flavor chemistry of cocoa and cocoa products-an overview. Compr. Rev. Food Sci. Food Saf., 15 (1), 73-91. DOI: https://doi.org/10.1111/1541-4337.12180. Search in Google Scholar

Arab, R., Hano, C., Oomah, D., Yous, F., Ayouaz, S., Madani, K., Boulekbache-Makhlouf, L. (2022). Impact of carob (Ceratonia siliqua L.) pulp flour supplementation on probiotic viability, milk fermentation and antioxidant capacity during yogurt storage. Nor. Afr. J. Food Nutr. Res., 6 (14), 154–164. Search in Google Scholar

Avallone, R., Plessi, M., Baraldi, M., Monzani, A. (1997). Determination of chemical composition of carob (Ceratonia siliqua): Protein, fat, carbohydrates, and tannins. J. Food Compos. Anal., 10 (2), 166–172. DOI: https://doi.org/10.1006/jfca.1997.0528. Search in Google Scholar

Ayaz, F. A., Torun, H., Glew, R. H., Bak, Z. D., Chuang, L. T., Presly, J. M., Andrews, R. (2009). Nutrient content of carob pod (Ceratonia siliqua L.) flour prepared commercially and domestically. Plant Food Hum. Nutr., 64, 286–292. Search in Google Scholar

Ayaz, F. A., Torun, H., Ayaz, S., Correia, P. J., Alaiz, M., Sanz, C., Grúz, J., Strnad, M. (2007). Determination of chemical composition of anatolian carob pod (Ceratonia siliqua L.): Sugars, amino and organic acids, minerals and phenolic compounds. J. Food Qual., 30 (6), 1040–1055. DOI: https://doi.org/10.1111/j.1745-4557.2007.00176.x Search in Google Scholar

Batlle, I., Tous, J. (1997). Carob Tree, Ceratonia Siliqua L. International Plant Genetic Resources Institute, Rome, Italy. 92 pp. Search in Google Scholar

Batu, A. (2005). Production of liquid and white solid pekmez in Turkey. J. Food Quality, 28, 417–427. Search in Google Scholar

Benchikh, Y., Louaileche, H., George, B., Merlin, A. (2014). Changes in bioactive phytochemical content and in vitro antioxidant activity of carob (Ceratonia siliqua L.) as influenced by fruit ripening. Ind. Crops Prod., 60, 298–303. DOI: https://doi.org/10.1016/j.indcrop.2014.05.048. Search in Google Scholar

Bengoechea, C., Romero, A., Villanueva, A., Moreno, G., Alaiz, M., Millan, F., Guerrero, A., Puppo, M.C. (2008). Composition and structure of carob (Ceratonia siliqua L.) Germ proteins. Food Chem., 107, 675–683. DOI: https://doi.org/10.1016/j.foodchem.2007.08.069. Search in Google Scholar

Bertazzo, A., Comai, S., Mangiarini, F., Chen, S. (2013). Composition of cacao beans. In: Watson, R. R., Preedy, V. R., Zibadi, S. (eds.). Chocolate in health and nutrition. Humana Press, Totowa, pp. 105–117. Search in Google Scholar

Biernacka, B., Dziki, D., Gawlik-Dziki, U., Różyło, R., Siastała, M. (2017). Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT – Food Science and Technology, 77, 186–192. Search in Google Scholar

Biner, B., Gubbuk, H., Karhan, M., Aksu, M., Pekmezci, M. (2007). Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food Chem., 100 (4), 1453–1455. DOI: https://doi.org/10.1016/j.foodchem.2005.11.037. Search in Google Scholar

Brassesco, M. E., Brandao, T. R. S., Silva, C. L. M., Pintado, M. (2021). Carob bean (Ceratonia siliqua L.): A new perspective for functional food. Trends Food Sci. Technol., 114, 310–322 Search in Google Scholar

Bravo, L., Grados, N., Saura-Calixto, F. (1994). Composition and potential uses of Mesquite pods (Prosopis pallida L.): Comparison with carob pods (Ceratonia siliqua L). J. Sci. Food Agricult., 65, 303–306. Search in Google Scholar

Bulca, S. (2016). Some properties of carob pod and its use in different areas including food technology. Sci. Bull. Ser. F Biotechnol., 20, 142–147. Search in Google Scholar

Caliskan, A., Abdullah, N., Ishak, N. (2022). Physicochemical properties of cypriot wild carob (Ceratonia siliqua L.) powder as cocoa powder substitute. Int. J. Latest Res. Hum. Soc. Sci., 5 (6), 145–154. Search in Google Scholar

Calixto, F. S., Cańellas, J. (1982). Components of nutritional interests in carob pods (Ceratonia siliqua). J. Sci. Food Agricult., 33, 1319–1223. Search in Google Scholar

Cardador-Martķnez, A., Espino-Sevilla, M. T., del Campo, S. T. M., Alonzo-Macķas, M. (2017). Dietary fiber as food additive: Present and future. In: Hosseinian, F., Oomah, B. D., Campos-Vega, R. (eds.). Dietary fiber functionality in food and nutraceuticals. Wiley, New York, pp. 77–94. DOI: https://doi.org/10.1002/9781119138105.ch4. Search in Google Scholar

Cavdarova, M., Makris, D. P. (2014). Extraction kinetics of phenolics from carob (Ceratonia siliqua L.) kibbles using environmentally benign solvents. Waste Biomass Valorization, 5 (5), 773–779. DOI: https://doi.org/10.1007/s12649-014-9298-3 Search in Google Scholar

Cepo, D. V., Mornar, A., Nigovi, B., Kremer, D., Radanovi, D., Dragojevi, I. V. (2014). Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. LWT-Food Sci. Technol., 58, 578–586. Search in Google Scholar

Cervenka, L., Frühbauerová, M., Velichová, H. (2019). Functional properties of muffin as affected by substituing wheat flour with carob powder, Potravinarstvo Slovak J. Food. Sci.,, 13, 212–217. Search in Google Scholar

Charley, H. (1982). Food Science. New York: Macmillan Publishing Company. 574 pp. Search in Google Scholar

Cole, L., Kramer, P. R. (2016). Chapter 5.2: Vitamins and minerals. In: Human Physiology, Biochemistry and Basic Medicine. Academic Press, Boston, pp. 165–175. DOI: https://doi.org/10.1016/B978-0-12-803699-0.00037-2. Search in Google Scholar

Colombo, M. L., Pinorini-Godly, M. T., Conti, A. (2012). Botany and pharmacognosy of the cacao tree. In: Conti, A., Paoletti, R., Poli, A., Visioli, F. (eds.). Chocolate and Health. Springer, Milan, pp. 41–62. Search in Google Scholar

Correia, P. J., Pestana, M. (2018). Exploratory analysis of the productivity of carob tree (Ceratonia siliqua L.) orchards conducted under dry-farming conditions. Sustainability, 10, 2250. Search in Google Scholar

Cui, S. W., Nie, S., Roberts, K. T. (2011). Functional properties of dietary fiber. In: Moo-Young, M. (ed.). Comprehensive Biotechnology.2nd edn. Academic Press, Burlington, pp. 517–525. DOI: https://doi.org/10.1016/B978-0-08-088504-9.00315-9. Search in Google Scholar

Cui, S. W., Roberts, K. T. (2009). Dietary fiber: fulfilling the promise of added-value formulations. In: Kasapis, S., Norton, I. T., Ubbink, J. B. (eds.). Modern Biopolymer Science. Academic Press, San Diego, pp. 399–448. Search in Google Scholar

Curtis, A., Race, D. (1998). Carob Agroforestry in the Low Rainfall Murray Valley: A market and economic assessment. Publication No. 98/8. Rural Industry Research and Development Corporation, Australia. 28 pp. Search in Google Scholar

Darwish, W. S., Khadr, A. E. S., Kamel, M. A. E. N., Abd Eldaim, M. A., El Sayed, I. E. T., Abdel-Bary, H. M., Ullah, S., Ghareeb, D. A. (2021). Phytochemical characterization and evaluation of biological activities of Egyptian carob pods (Ceratonia siliqua L.) aqueous extract: in vitro study. Plants, 10, 2626. DOI: https://doi.org/10.3390/plants10122626. Search in Google Scholar

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350–356. Search in Google Scholar

Durazzo, A., Turfani, V., Narducci, V., Azzini, E., Maiani, G., Carcea, M. (2014). Nutritional characterisation and bioactive components of commercial carobs flours. Food Chem., 153, 109–113. DOI: https://doi.org/10.1016/j.foodchem.2013.12.045. Search in Google Scholar

Fadel, F., El Mehrach, K., Chebli, B., Fahmi, F., El Hafa, M., Amri, O., Ait Bihi, M., Hatimi, A., Tahrouch, S. (2020). Morphometric and physicochemical characteristics of carob pods in three geographical regions of Morocco. SN Appl. Sci., 2, 2173. DOI: https://doi.org/10.1007/s42452-020-03963-w. Search in Google Scholar

Fidan, H., Mihaylova, D., Petkova, N., Sapoundzhieva, T., Slavov, A., Krastev, L. (2019). Determination of chemical composition, antibacterial and antioxidant properties of products obtained from carob and honey locust. Turk. J. Biochem., 44 (3), 316–322. Search in Google Scholar

Fidan, H., Stankov, S., Petkova, N., Petkova, Z., Iliev, A., Stoyanova, M., Ivanova, T., Zhelyazkov, N., Ibrahim, S., Stoyanova, A., Ercisli, S. (2020). Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J. Food Sci. Technol., 57 (7), 2404–2413. Search in Google Scholar

Food and Agriculture Organization of the United Nations, AGRIS. (2018). Carob Bean (Ceratonia siliqua L.) and its products. http://faostat.fao.org (accessed 12.03.2024) Search in Google Scholar

Food and Agriculture Organization of the United Nations (FAO). FAOSTAT. (2019). Carob Worldwide Production in 2017. http://faostat.fao.org/faostat/en/#data/QCL (accessed 12.03.2024). Search in Google Scholar

Food and Agriculture Organization of the United Nations (FAO). FAOSTAT. (2021). Average Carob Production. 2013–2019. http://faostat.fao.org/faostat/en/#data/QCL (accessed 12.03.2024). Search in Google Scholar

Gadoum, A., Chahbar, M., Adda, A., Sahnoune, M., Aid, F. (2021). Morphometrical variation of carob tree (Ceratonia siliqua L.) in Algeria. Genet. Biodiv. J. Special issue (Characterization and valorisation of plants), 103–115. Search in Google Scholar

Gao, Y., Yue, J. (2012). Dietary fiber and human health. In: Yu, L., Tsao, R., Shahidi, F. (eds.). Cereals and Pulses. Wiley-Blackwell, Oxford, pp. 261–271. DOI: https://doi.org/10.1002/9781118229415.ch18. Search in Google Scholar

Gharibzahedi, S. M. T., Jafari, S. M. (2017). The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nano encapsulation. Trends Food Sci. Technol., 62, 119–132. DOI: https://doi.org/10.1016/j.tifs.2017.02.017. Search in Google Scholar

Gioxari, A., Amerikanou, C., Nestoridi, I., Gourgari, E., Pratsinis, H., Kalogeropoulos, N., Andrikopoulos, N. K., Kaliora, A. C. (2022). Carob: A sustainable opportunity for metabolic health. Foods, 11, 2154. DOI: https://doi.org/10.3390/foods11142154. Search in Google Scholar

Gubbuk, H., Kafkas, E., Guven, D., Gunes, E. (2010). Physical and phytochemical profile of wild and domesticated carob (Ceratonia siliqua L.) genotypes. Span. J. Agric. Res., 8 (4), 1129–1136. Search in Google Scholar

Gunel, Z., Torun, M., Sahin-Nadeem, H. (2020). Sugar, d-pinitol, volatile composition, and antioxidant activity of carob powder roasted by microwave, hot air, and combined microwave/hot air. J. Food Process. Preserv., 44, e14371. Search in Google Scholar

Habibzadeh, D., Seyedain Ardabili, S. M. (2019). Evaluation of physico-chemical, rheological and sensory properties of wafer cream by replacing cocoa powder with carob pod and chicory root powders. Int. Food Res. J., 26 (3), 1059–1068. Search in Google Scholar

Haddarah, A., Ismail, A., Bassal, A., Hamieh, T., Ioannou, I., Ghoul, M. (2013). Morphological and chemical variability of Lebanese carob varieties. Eur. Sci. J., 9 (18), 353–359. Search in Google Scholar

Henneberg, W., Stohmann, F. (1860). Beiträge zur begründung einer rationellen fütterung der wiederkäuer, Vol. 1. Schwetschk, Braunschweig. 315 pp. Search in Google Scholar

Ibrahim, R. M., Abdel-Salam, F. F., Farahat, E. (2020). Utilization of carob (Ceratonia siliqua L.): Extract as functional ingredient in some confectionery products. Food Nutr. Sci., 11, 757–772. DOI: https://doi.org/10.4236/fns.2020.118054. Search in Google Scholar

Ikram, A., Khalid, W., Zafar, W. K., Ali, A., Afzal, M. F., Aziz, A., Rasool, I. F., Al-Farga, A., Aqlan, F., Koraqi, H. (2023). Nutritional, biochemical, and clinical applications of carob: A review. Food Sci. Nutr., 11, 3641–3654. DOI: https://doi.org/10.1002/fsn3.3367. Search in Google Scholar

ISO 659:2009. Graines oléagineuses. Détermination de la teneur en huile (Méthode de référence). Edn. 4, 13 p. J. Food Sci. Nutr., 58, 652–658. Search in Google Scholar

Issaoui, M., Flamini, G., Delgado, A. (2021). Sustainability opportunities for Mediterranean food products through new formulations based on carob flour (Ceratonia siliqua L.). Sustainability, 13, 8026. Search in Google Scholar

Jridi, M., Souissi, N., Ben Salem, M., Ayadi, M. A., Nasri, M., Azabou, S. (2015). Tunisian date (Phoenix dactylifera L.) by-products: Characterization and potential effects on sensory, textural and antioxidant properties of dairy desserts. Food Chem., 188, 8–15. Search in Google Scholar

Kjeldahl, J. (1883). A new method for the determination of nitrogen in organic matter. Ztschr. Anal. Chem., 22, 366–382. Search in Google Scholar

Kocherane, R., Krouchi, F., Derridj, A. (2019). Genetic resources of carob tree (Ceratonia siliqua L.) in Algeria: Insight from pod and seed morphology. Revue Agrobiologia, 9 (2), 1581–1600. Search in Google Scholar

Krokou, A., Stylianou, M., Agapiou, A. (2018). Environmental aspects of carob tree (Ceratonia siliqua L.), 6th International Conference on Sustainable Solid Waste Management, 13–16 June, Naxos, Greece. Search in Google Scholar

Kumazawa, S., Taniguchi, M., Shimura, M., Kwon, M., Nakayama, T. (2002). Antioxidant activity of polyphenols in carob pods. J. Agricult. Food Chem., 50, 373–377. Search in Google Scholar

Lal, R. (2020). Home gardening and urban agriculture for advancing food and nutritional security in response to the covid-19 pandemic. Food Security, 23, 1–6. Search in Google Scholar

Lanfranchi, M., Zirilli, A., Alfano, S., Spiridione, F.S., Alibrandi, A., Giannetto, C. (2019). The carob as a substitute for cocoa in the production of chocolate: Sensory analysis with bivariate association, Food Safety Manag., 20, 148–153. Search in Google Scholar

Lee, C. Y., Kagan, V., Jawarski, A. W., Brown, S. K. (1990). Enzymatic browning in relation to phenolic compounds and poly-phenol oxidase activity among various peach cultivars. J. Agricult. Food Chem., 88, 99–101. Search in Google Scholar

Loullis, A., Pinakoulaki E. (2018). Carob as cocoa substitute: a review on composition, health benefits and food applications. Eur. Food Res. Technol., 244, 959–977. DOI: https://doi.org/10.1007/s00217-017-3018-8. Search in Google Scholar

Lupu, M. I., Canja, C. M.,Padureanu, V., Boieriu, A., Maier, A.,Badarau, C., Padureanu, C., Croitoru,C., Alexa, E., Poiana, M.-A. (2023). Insights on the potential of carob powder (Ceratonia siliqua L.) to improve the physico-chemical, biochemical and nutritional properties of wheat durum pasta. Appl. Sci., 13, 3788. DOI: https://doi.org/10.3390/app13063788. Search in Google Scholar

Mahdad, Y. M., Mediouni, R. M., Viruel, J., Selka, N., Gaouar, S. B. S. (2022). Functional diversity based on morphometric analysis and identification of the Algerian carob tree (Ceratonia siliqua L.) cultivars. Genet. Biodiv. J., 6 (2), 1–20. Search in Google Scholar

Mahtout, R., Ortiz-Martķnez, V. M., Salar-Garcķa, M. J., Gracia, I., Hernández-Fernández, F. J., de los Rķos, A. P., Zaidia, F., Sanchez-Segado, S., Lozano-Blanco, L. J (2018). Algerian carob tree products: A comprehensive valorization analysis and future prospects. Sustainability, 10, 90. DOI:10.3390/su10010090. Search in Google Scholar

Makris, D. P., Kefalas, P. (2004). Carob pods (Ceratonia siliqua L.) as a sources of polyphenolic antioxidants. Food Technol. Biotechnol., 42 (2), 105–108. Search in Google Scholar

Marakis, S. G. (1996). Carob bean in food and feed: status and future potentials: A critical appraisal. J. Food Sci. Technol., 33 (5), 365–383. Search in Google Scholar

Nasar-Abbas, S. M., e-Huma, Z., Vu, T.-H., Khan, M. K., Esbenshade, H., Jayasena, V. (2016). Carob kibble: A bioactive-rich food ingredient. Compr. Rev. Food Sci. Food Saf., 15 (1), 63–72. DOI: https://doi.org/10.1111/1541-4337.12177. Search in Google Scholar

Nielsen, S. S. (2003). Food Analysis.3rd ed. Kluwer Academic/Plenum Publishers, New York, pp. 105–106. Search in Google Scholar

Nielsen, S. S. (2010). Food Analysis,4th, Moisture and Total Solids Analysis. 10.1007/978-1-4419-1478-1(Chapter 6), 85–104. DOI:10.1007/978-1-4419-1478-1_6. Search in Google Scholar

Owen, R. W., Haubne, R., Hull, W. E., Erben, G., Spiegelhalder, B., Bartsch, H. Haber, B. (2003). Isolation and structure elucidation of the major individual polyphenols in carob fiber. Food Chem. Toxicol., 41, 1727–1738. DOI:https://doi.org/10.1016/S0278-6915(03)00200-X. Search in Google Scholar

Ozcan, M. M., Arslan, D., Gökēalik, H. (2007). Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int. J. Food Sci. Nutr., 58, 652–658. Search in Google Scholar

Papaefstathiou, E., Agapiou, A., Giannopoulos, S., Kokkinofta, R. (2018). Nutritional characterization of carobs and traditional carob products. Food Sci. Nutr., 6, 2151–2161. Search in Google Scholar

Pernet, C. A., Ribi Forclaz, A. (2019). Revisiting the Food and Agriculture Organization (FAO): International histories of agriculture, nutrition, and development. Int. Hist. Rev., 41 (2), 345–350. Search in Google Scholar

Ramón-Laca, L., Mabberley, D. J. (2004). The ecological status of the carob-tree (Ceratonia siliqua, Leguminosae) in the Mediterranean. Bot. J. Linnean Soc., 144 (4), 431–436. Search in Google Scholar

Rippin, H. L., Wickramasinghe, K., Halloran, A., Whiting, S., Williams, J., Hetz, K., Pinedo, A., Breda, J. J. (2020). Disrupted food systems in the WHO European region: A threat or opportunity for healthy and sustainable food and nutrition? Food Security, 23, 1–6. Search in Google Scholar

Rodrķguez-Solana, R., Salgado, J. M., Pérez-Santķn, E., Romano, A. (2019). Effect of carob variety and roasting on the antioxidant capacity, and the phenolic and furanic contents of carob liquors. J. Sci. Food Agricult., 99, 2697–2707. Search in Google Scholar

Rodrķguez-Solana, R., Romano, A., Moreno-Rojas, J. M. (2021). Carob pulp: A nutritional and functional by-product world wide spread in the formulation of different food products and beverages. A review. Processes, 9, 1146. DOI: https://doi.org/10.3390/pr9071146. Search in Google Scholar

Roseiro, L. B., Tavares, C. S., Roseiro, J. C., Rauter, A. P. (2013). Antioxidants from aqueous decoction of carob pods biomass (Ceretonia siliqua L.): Optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Industr. Crops Prod., 44, 119–126. Search in Google Scholar

Seczyk, L., Swieca, M., Gawlik-Dziki, U. (2016). Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chem., 194, 637–642. Search in Google Scholar

Shawakfeh, K. Q., Ereifej, K. I. (2005). Pod characteristics of two Ceratonia siliqua L. varieties from Jordan. Ital. J. Food Sci., 17 (2), 187–194. Search in Google Scholar

Sigge, G. O., Lipumbu, L., Britz, T. J. (2011). Proximate composition of carob cultivars growing in South Africa. South Afr. J. Plant Soil, 28 (1), 17–2. DOI: https://doi.org/10.1080/02571862.2011.10640008. Search in Google Scholar

Singh, G., Arora, S., Sharma, G. S., Sindhu, J. S., Kansal, V. K., Sangwan, R. B. (2007). Heat stability and calcium bioavailability of calcium fortified milk. LWT Food Sci Technol, 40 (4), 625–631. DOI: https://doi.org/10.1016/j.lwt.2006.03.009. Search in Google Scholar

Thebaudin, J. Y., Lefebvre, A. C., Harrington, M., Bourgeois, C. M. (1997). Dietary fibers: Nutritional and technological interest. Trends Food Sci. Technol., 8 (2), 41–48. DOI: https://doi.org/10.1016/S0924-2244(97)01007-8. Search in Google Scholar

Tounsi, L., Mkaouar, S., Bredai, S., Kechaou, N. (2022). Valorization of carob by-product for producing an added value powder: Characterization and incorporation into Halva formulation. J. Food Measur. Char.,16, 3957–3966. Search in Google Scholar

Tous, J., Romero, A., Batlle, I. (2013). The carob tree: Botany, horticulture, and genetic resources. Horticult. Rev., 41, 385–456. Search in Google Scholar

Turhan, I., Bialka, K.L., Demirci, A., Karhan, M. (2010). Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresour. Technol., 101, 5290–5296. Search in Google Scholar

Tzatzani, T.-T., Ouzounidou, G. (2023). Carob as an agrifood chain product of cultural, agricultural and economic importance in the Mediterranean region. J. Innov. Econ. Manag., 3 (42), 1–22. Search in Google Scholar

Tzatzani, T.-T., Michail, I. (2022). Growth capacity of Ceratonia siliqua seeds, an appropriate species to climate change. In: Proceedings of the 30th Conference of the Greek Scientific Fruit and Vegetable Society (poster) (in press), 9–13 May, Athens. Search in Google Scholar

Vanham, D., Mak, T. N., Gawlik, B. M. (2016). Urban food consumption and associated water resources: The example of Dutch cities, Sci. Total Environ., 565 (3), 232–239. Search in Google Scholar

Würsch, P., Del Vedove, S., Rosset, J., Smiley, M. (1984). The tannin granules from ripe carob pod. Lebensmittel-Wissenschaft und -Technologie, 17, 351–354. Search in Google Scholar

Yousif, A. K., Alghzawi, H. M. (2000). Processing and characterization of carob powder. Food Chemistry, 69 (3), 283–287. Search in Google Scholar

Youssef, M. K. E., El-Manfaloty, M. M., Ali, H. M. (2013). Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of carob (Ceratonia siliqua L.). Food Public Health, 3, 304–308. DOI: https://doi.org/10.5923/j.fph.20130306.06. Search in Google Scholar

Zografakis, N., Dasenakis, D. (2000). Biomass in Mediterranean. Project No. 238: Studies on the exploitation of carob for bioethanol production. Commission of the European Communities, Directorate General for energy and transport. Regional Energy Agency, Region of Crete. Search in Google Scholar

eISSN:
2255-890X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics