Open Access

Evaluation of Apple Scab and Occurrence of Venturia Inaequalis Races on Differential Malus Genotypes in Latvia


Cite

Barbara, D. J. J., Roberts, A. L. L., Xu, X.-M. (2008). Virulence characteristics of apple scab (Venturia inaequalis) isolates from monoculture and mixed orchards. Plant Pathol., 57 (3), 552–561. https://doi.org10.1111/j.1365-3059.2007.01781.x10.1111/j.1365-3059.2007.01781.x Search in Google Scholar

Bastiaanse, H., Bassett, H. C., Kirk, C., Gardiner, S. E., Deng, C., Groenworld, R., Chagné, D., Bus, V. G. (2016). Scab resistance in ‘Geneva’ apple is conditioned by a resistance gene cluster with complex genetic control. Mol. Plant Pathol., 17 (2), 159–172. https://doi.org/10.1111/mpp.12269663852225892110 Search in Google Scholar

Bénaouf, G., Parisi, L. (2000). Genetics of the host – pathogen relationship between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology, 90, 236–242. https://doi.org/10.1094/PHYTO.2000.90.3.2 Search in Google Scholar

Bénaouf, G., Parisi, L., Laurens, F. (1997). Inheritance of Malus foribunda clone 821 resistance to Venturia inaequalis. IOBC/WPRS Bull, 20 (9), 1–7. Search in Google Scholar

Biggs, A. R., Stensvand, A. (2014). Apple scab. In: Sutton, T. B., Alswinckle, H. S., Agnello, A. M., Walgenbach, J. F. (eds.). Compendium of Apple and Pear Diseases and Pests. APS Press, T.B. St. Paul, MN, USA, pp. 8–11. Search in Google Scholar

Bowen, J. K., Mesarich, C. H., Bus, V. G. M., Beresford, R. M., Plummer, K., Templeton, M. D. (2011). Venturia inaequalis: the causal agent of apple scab. Mol. Plant Pathol., 12, 105–122. https://doi.org/10.1111/j.1364-3703.2010.00656.x664035021199562 Search in Google Scholar

Bus, V. G. M., Rikkerink, E. H. A., Caffier, V., Durel, C. E., Plummer, K. M. (2011). Revision of the nomenclature of the differential host–pathogen interactions of Venturia inaequalis and Malus. Annu. Rev. Phytopathol., 49, 391–413. https://doi.org/10.1146/annurev-phyto-072910-09533921599495 Search in Google Scholar

Didelot, F., Brun, L., Parisi, L. (2007). Effects of cultivar mixtures on scab control in apple orchards. Plant Pathol., 56, 1014–1022. https://doi.org/10.1111/j.1365-3059.2007.01695.x Search in Google Scholar

Didelot, F., Caffier, V., Orain, G., Lemarquand, A., Parisi, L. (2016). Sustainable management of scab control through the integration of apple resistant cultivars in a low-fungicide input system. Agriculture, Ecosystems and Environment, 217 (1), 41–48. https://doi.org/10.1016/j.agee.2015.10.023 Search in Google Scholar

Durner, E., Dean, F. Polk, D. F., Goffreda, J. C. (1992). Low-input apple production systems consumer acceptance of disease-resistant cultivars. HortScience, 27 (2), 177–179. https://doi.org/10.21273/HORTSCI.27.2.177 Search in Google Scholar

Gessler, C., Pertot, I. (2011). Vf scab resistance of Malus. TreesStructure and Function, 26, 1–14. https://doi.org/10.1007/s00468-011-0618-y Search in Google Scholar

Höfer, M., Flachowsky, H., Schröpfer, S., Peil, A. (2021). Evaluation of scab and mildew resistance in the Gene Bank collection of apples in Dresden-Pillnitz. Plants (Basel, Switzerland), 10 (6), 1227. https://doi.org/10.3390/plants10061227823424534208651 Search in Google Scholar

Holb, I. J. (2007). Classification of apple cultivar reactions to scab in integrated and organic apple production systems. Can. J. Plant Pathol., 29, 251–260.10.1080/07060660709507467 Search in Google Scholar

Holb, I. J., Heijne, B., Withagen, J. C. M., Gall, J. M., Jeger, M. J. (2005). Analysis of summer epidemic progress of apple scab at different apple production systems in the Netherlands and Hungary. Phytopathology, 95, 1001–1020.10.1094/PHYTO-95-100118943298 Search in Google Scholar

Holb, I. J. (2009). Fungal disease management in environmentally friendly apple production: A review. Sustain. Agric. Rev., 2, 219–293.10.1007/978-90-481-2716-0_10 Search in Google Scholar

Ikase, L. (2015). Results of fruit breeding in Baltic and Nordic states. In: Proceedings of the NJF 25th congress. Nordic View to Sustainable Rural Development, 16–18 June. Rīga, pp. 31–37. Search in Google Scholar

Ikase, L., Lācis, G. (2013). Apple breeding and genetic resources in Latvia. Acta Hortic., 976, 69–74. https://doi.org/10.17660/ActaHortic.2013.976.5 Search in Google Scholar

Ikase, L., Drudze, I, Lācis, G. (2022). Current achievements of the Latvian apple breeding programme. Proc. Latvian Acad. Sci., Section B, 76 (4), pp. 424–431. (this issue).10.2478/prolas-2022-0066 Search in Google Scholar

Jamar, L. (2011). Innovative strategies for the control of apple scab (Venturia inaequalis [Cke.] Wint.) in organic apple production. PhD thesis, University of Liege-Gembloux Agro-Bio Tech, Belgium. Search in Google Scholar

Janick, J. (2002). The pear in history, literature, popular culture, and art. Acta Hortic., 596, 4–52. https://doi.org/10.17660/ActaHortic.2002.596.1 Search in Google Scholar

Jha, G., Thakur, K., Thakur, P. (2009). The Venturia apple pathosystem: Pathogenicity mechanisms and plant defense responses. J. Biomed. Biotechnol., 2009, 680160. https://doi.org:10.1155/2009/68016010.1155/2009/680160 Search in Google Scholar

Kaufmane, E., Skrivele, M., Rubauskis, E., Strautiòa, S., Ikase, L., Lacis, G., Priekule, I. (2013). Development of fruit science in Latvia. Proc. Latvian Acad. Sci., Section B, 67, 71–83.10.2478/prolas-2013-0013 Search in Google Scholar

Lateur, M., Populer, C. (1994). Screening fruit tree genetic resources in Belgium for disease resistance and other desirable characters. Euphytica, 77, 147–153.10.1007/BF02551478 Search in Google Scholar

Lespinasse, Y., Durel, C. E., Laurens, F., Chevalier, M., Pinet, C., Parisi, L. (2000). A European project: D.A.R.E. – Durable Apple Resistance in Europe (FAIR5 CT97-3898) Durable resistance of apple to scab and powdery-mildew one step more towards an environmental friendly orchard. Acta Hortic., 538, 197–200. https://doi.org/10.17660/ActaHortic.2000.538.32 Search in Google Scholar

Liliane, T. N., Charles, M. S. (2020). Factors affecting yield of crops. Agron. Clim. Chang. Food Secur., 1–16. DOI: 10.5772/intechopen.90672.10.5772/intechopen.90672 Search in Google Scholar

MacHardy, W. E. (1996). Apple Scab: Biology, Epidemiology, and Management. American Phytopathological Society (APS Press), St. Paul, Minnesota. 545 pp. Search in Google Scholar

MacHardy, W. E., Gadoury, D. M., Gessler, C. (2001). Parasitic and biological fitness of Venturia inaequalis: Relationship to disease management strategies. Plant Dis., 85, 1036–1051. https://doi.org/10.1094/PDIS.2001.85.10.103630823274 Search in Google Scholar

Masny, S. (2017). Occurrence of Venturia inaequalis races in Poland able to overcome specific apple scab resistance genes. Eur. J. Plant Path., 147 (2), 313–323. https://doi.org10.1007/s10658-016-1003-x10.1007/s10658-016-1003-x Search in Google Scholar

Mayr, U., Michalek, S., Treutter, D., Feucht, W. (1997). Phenolic compounds of apple and their relationship to scab resistance. J. Phytopathol., 145, 69–75.10.1111/j.1439-0434.1997.tb00366.x Search in Google Scholar

Meier, U., Graf, H., Hack, H., Hess, M., Kennel, W., Klose, R., Mappes, D., Seipp, D., Stauss, R., Streif, J., Van den Boom, T. (1994). Phänologische Entwick-lungsstadien des Kernobstes (Malus domestica Borkh. und Pyrus communis L.), des Steinobstes (Prunus-Arten), der Johannesbeere (Ribes-Arten) und der Erdbeere (Fragaria × ananassa Duch.). Nachrichtenbl [Phenological stages of development of pome (Malus domestica Borkh. and Pyrus communis L.), stone fruits (Prunus spp.), currants (Ribes spp.) and strawberries (Fragaria × ananassa Duch.)]. Deut. Pflanzenschutzd. [Bulletin of the German Plant Protection Service]. 46, 141–153 (in German). Search in Google Scholar

Papp, D., Gao, L., Thapa, R., Olmstead, D., Khan, A. (2020). Field apple scab susceptibility of a diverse Malus germplasm collection identifies potential sources of resistance for apple breeding. CABI Agric. Biosci., 1, 16. https://doi.org/10.1186/s43170-020-00017-4. Search in Google Scholar

Parisi, L., Lespinasse, V., Guillaumes, J., Kruger, J. (1993). A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology, 83 (5), 533–537.10.1094/Phyto-83-533 Search in Google Scholar

Patocchi, A., Frei, A., Frey, J. E., Kellerhals, M. (2009). Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol. Breed., 24, 337–347.10.1007/s11032-009-9295-6 Search in Google Scholar

Patocchi, A., Wehrli, A., Dubuis, P.-H., Auwerkerken, A., Leida, C., Cipriani, G., Passey, T., Staples, M., Didelot, F., Philion, V., Peil, A., Laszakovits, H., Ruhmer, T., Boeck, K., Baniulis, D., Strasser, K., Vavra, R., Guerra, W., Masny, S., Ruess, F., LeBerre, F., Nybom, H., Tartarini, S., Spornberger, A., Pikunova, A., Bus, V. G. M. (2020). Ten years of VINQUEST: First insight for breeding new apple cultivars with durable apple scab resistance. Plant Dis., 104, 2074–2081. https://doi.org10.17660/ActaHortic.2021.1307.4810.1094/PDIS-11-19-2473-SR32525450 Search in Google Scholar

Pikunova, A. V., Sedov, E. N. (2019). The composition of Venturia inaequalis races in the Oryol region [Расовый состав Venturia inaequalis в условиях Орловской области]. Mycology and Phytopathology [Микология и фитопатология]. 57 (5), 293–300 (in Russian). https://doi.org10.1134/S002636481905004010.1134/S0026364819050040 Search in Google Scholar

Polat, Z., Bayraktar, H. (2021). Resistance of Venturia inaequalis to multiple fungicides in Turkish apple orchards. J. Phytopathol., 169 (6), 360–368. https://doi.org/10.1111/jph.12990 Search in Google Scholar

Rancane, R., Zagorska, V. (2021). Apple scab control and resistance risk of Venturia inaequalis to curative fungicides in apple orchards. In: Proceedings of the 4th International Scientific Conference. Sustainable Horticulture from Plant to Product: Challenges in Temperate Climate, 25–26 August 2021. Dobele, p. 65. Search in Google Scholar

Rancane, R., Ozoliòa-Pole, L. (2021). LLU Augu aizsardzības zinātniskā institūta “Agrihorts” novērojumi par kaitīgo organismu izplatību ābeļu stādījumos 2021. gada sezonā [Observations of the LLU Plant Protection Scientific Institute “Agrihorts” on the spread of harmful organisms in the apple orchards in the 2021 season]. Profesionālā dārzkopība [Professional Horticulture], 1 (14), 49–53. http://laukutikls.lv/sites/laukutikls.lv/files/informativie_materiali/profesionala_darzkopiba_nr14.pdf (in Latvian). Search in Google Scholar

Roberts, A. L., Crute, I. R. (1994). Apple scab resistance from Malus floribunda 821 (Vf) is rendered ineffective by isolates of Venturia inaequalis from Malus floribunda. Nor. J. Agric. Sci., 17, 403–406. Search in Google Scholar

Rossi, V., Giogue, S., Bugiani, R. (2007). A-scab (Apple scab), a simulation model for estimating risk of Venturia inaequalis primary infections. IOBC-WPRS Bull., 37, 300–308. https://doi.org10.1111/j.1365-2338.2007.01125.x10.1111/j.1365-2338.2007.01125.x Search in Google Scholar

Sandskär, B., Liljeroth, E. (2005). Incidence of races of the apple scab pathogen (Venturia inaequalis) in apple growing districts in Sweden. Acta Agric Scand Sect B. -Plant Soil Sci., 55 (2), 143–150. https://doi.org/10.1080/09064710510029042 Search in Google Scholar

Sharma, J. N. (2005). Scab and premature leaf fall diseases of apple and their management. In: Sharma R., Sharma J. (eds.). Challenging Problems in Horticultural and Forest Pathology. Indus Publishing Co., New Delhi, pp. 11–31. Search in Google Scholar

Stensvand, A., Amundsen, T., Semb, L. (1996). Observations on wood scab caused by Venturia inaequalis and V. pyrina in apple and pear in Norway. Nor. J. Agric. Sci., 10, 533–540. Search in Google Scholar

Tiirmaa, K., Univer, N., Univer, T. (2006). Evaluation of apple cultivars for scab resistance in Estonia. Agron. Res., 4 (Special issue), 413–416. Search in Google Scholar

Tiirmaa, K., Univer, N., Univer, T. (2009). Evaluation of apple cultivars for scab resistance in Estonia. Agron. Res., 7 (Special issue I), 528–531. Search in Google Scholar

Turechek, W. W. (2004). Apple diseases and their management. In: Diseases of Fruits and Vegetables. Diagnosis and Management. Vol. I. Naqvi, S.A.M.H. (ed.) Kluwer Academic Publishers, Dordrecht, pp. 1–108.10.1007/1-4020-2606-4_1 Search in Google Scholar

Valiuškaitė, A., Raudonis, L., Lanauskas, J., Sasnauskas, A., Survilienë, E. (2009). Disease incidence on different cultivars of apple tree for organic growing. Agron. Res., 7 (Special issue I), 536–541. Search in Google Scholar

Valsangiacomo, C., Gessler, C. (1988). Role of the cuticular membrane in ontogenic and Vf – resistance of apple leaves against Venturia inaequalis. Phytopathology, 78, 1066–1069.10.1094/Phyto-78-1066 Search in Google Scholar

Verma, L. R., Sharma, R. C. (1999). Diseases of Horticultural Crops: Fruits. Indus Publishing Company, New Delhi. 718 pp. Search in Google Scholar

Williams, E. B., Brown, A. G. (1968). A new physiologic race of Venturia inaequalis. Annu. Rev. Phytopathol., 7, 223–246.10.1146/annurev.py.07.090169.001255 Search in Google Scholar

Zuļģe, N., Kāle, A., Gospodaryk, A., Vēvere, K., Moročko-Bičevska, I. (2017). Establishment of nuclear stock collections for apple and pear in Latvia. Proc. Latvian Acad. Sci., Section B, 71 (3), 156–165. https://doi.org/10.1515/prolas-2017-0027 Search in Google Scholar

eISSN:
2255-890X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics