Cite

Aalbers, P., Balkhoven, M. K., Burg, W. L. (1998). The WELTE scab model the solution of the apple scab problem? Obstbau, 23, 198–202. Search in Google Scholar

Acimovic, S. G, Wallis, A. E., Basedow, M. R. (2018). Two years of experience with RIMpro apple scab prediction model on commercial apple farms in Eastern New York. Fruit Q, 26 (4), 21–28. Search in Google Scholar

Arsenovic, M., Karanovic, M., Sladojevic, S., Anderla, A., Stefanovic, D. (2019). Solving current limitations of deep learning based approaches for plant disease detection. Symmetry, 11 (7). DOI: 10.3390/sym11070939.10.3390/sym11070939 Search in Google Scholar

Bansal, P., Kumar, R., Kumar, S. (2021). Disease detection in apple leaves using deep convolutional neural network. Agriculture, 11 (7), 617. DOI: 10.3390/agriculture11070617.10.3390/agriculture11070617 Search in Google Scholar

Barbara, D. J. J., Roberts, A. L. L., Xu, X.-M. (2008). Virulence characteristics of apple scab (Venturia inaequalis) isolates from monoculture and mixed orchards. Plant Pathol., 57 (3), 552–561.10.1111/j.1365-3059.2007.01781.x Search in Google Scholar

Biggs, A. R., Stensvand, A. (2014). Apple scab. In: Sutton, T. B., Alswinckle, H. S., Agnello, A. M., Walgenbach, J. F. (eds.). Compendium of Apple and Pear Diseases and Pests. APS Press, pp. 8–11. Search in Google Scholar

Blaise, P. H., Arneson, P. A., Gessler, C. (1987). APPLESCAB A teaching aid on microcomputers. Plant Diss., 71 (7), 574–578.10.1094/PD-71-0574 Search in Google Scholar

Butt, D. J., Santen, G. V., Xu, X. M., Stone, K. B. (1992). VENTEM –an apple scab (Venturia inaequalis) infection warning system. Version 3.1. Computer software and manual. HRI East Malling, UK. Search in Google Scholar

Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S. (2018). Large scale fine-grained categorization and domain-specific transfer learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18–23 June 2018, Salt Lake City, UT, USA. IEEE, pp. 4109–4118. DOI: 10.1109/CVPR.2018.00432.10.1109/CVPR.2018.00432 Search in Google Scholar

Dammavalam, S. R., Challagundla, R. B., Kiran, V. S., Nuvvusetty, R., Baru, L. B., Boddeda, R., Kanumolu, S. V. (2021). Leaf image classification with the aid of transfer learning: A deep learning approach. Current Chinese Computer Science, 1 (1). DOI: 10.2174/2665997201999200811150433.10.2174/2665997201999200811150433 Search in Google Scholar

Hasan, R. I., Yusuf, S. M., Alzubaidi, L. (2020). Review of the state of the art of deep learning for plant diseases: A broad analysis and discussion. Plants, 9 (10). DOI: 10.3390/plants9101302.10.3390/plants9101302759989033019765 Search in Google Scholar

Hughes, D. P., Salathé, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. In open-access archive arXiv.org. https://arxiv.org/ftp/arxiv/papers/1511/1511.08060.pdf (accessed 25.08.2021). Search in Google Scholar

Jamar, L. (2011). Innovative strategies for the control of apple scab (Venturia inaequalis) in organic apple production. Doctoral dissertation, University of Liege. Liege, Belgium.196 pp. https://orgprints.org/id/eprint/29508/1/These_Laurent_Jamar.pdf (accessed 20.06.2022). Search in Google Scholar

Kaur, P., Sikka, K., Wang, W., Belongie, S., Divakaran, A. (2019). FoodX-251: A dataset for fine-grained food classification. In open-access archive arXiv.org. https://arxiv.org/pdf/1907.06167.pdf (accessed 25.08.2021). Search in Google Scholar

Kodors, S., Lacis, G., Sokolova, O., Zhukovs, V., Apeinans, I., Bartulsons, T. (2021). Apple scab detection using CNN and Transfer Learning. Agron. Res., 19 (2), 507–519. DOI: 10.15159/ar.21.045 Search in Google Scholar

Kodors, S., Lacis, G., Zhukov, V., Bartulsons, T. (2020). Pear and apple recognition using deep learning and mobile. In: Proceedings of 19th International Scientific Conference Engineering for Rural Development, 20–22 May, Jelgava. Latvia University of Life Sciences and Technologies, pp. 1795–1800. DOI: 10.22616/ERDev.2020.19.TF47610.22616/ERDev.2020.19.TF476 Search in Google Scholar

Mamaev, A. (2018). Public data collection “Flowers”. https://www.kaggle.com/alxmamaev/flowers-recognition (accessed 25 August 2021). Search in Google Scholar

Meszka, B. (2015). Study of Venturia inaequalis pseudothecia development and apple scab severity under Polish conditions. Folia Hort., 27 (2), 107–114. DOI: 10.1515/fhort-2015-002010.1515/fhort-2015-0020 Search in Google Scholar

Ngiam, J., Peng, D., Vasudevan, V., Kornblith, S., Le, Q., Pang, R. (2018). Domain Adaptive Transfer Learning with Specialist Models. In open-access archive arXiv.org. Google Brain. https://arxiv.org/pdf/1811.07056.pdf (accessed 25.08.2021) Search in Google Scholar

Rancane, R., Eihe, M., Jankovska, L. (2008). Adaption of simulation model RIMPRO for primary apple scab control in Latvia. Acta Horticult., 803, 69–76.10.17660/ActaHortic.2008.803.7 Search in Google Scholar

Rehman, Z., Khan, M. A., Ahmed, F. et al. (2021). Recognising apple leaf diseases using a novel parallel real-time processing framework based on MASK RCNN and transfer learning: An application for smart agriculture. IET Image Process, 15, 2157–2168. DOI: doi.org/10.1049/ipr2.1218310.1049/ipr2.12183 Search in Google Scholar

Schor, N., Berman, S., Dombrovsky, A., Elad, Y., Ignat, T., Bechar, A. (2017). Development of a robotic detection system for greenhouse pepper plant diseases. Precis. Agric., 18 (3), 394–409.10.1007/s11119-017-9503-z Search in Google Scholar

Stensvand, A., Amundsen, T., Semb, L. (1996). Observations on wood scab caused by Venturia inaequalis and V. pyrina in apple and pear in Norway. Norwegian J. Agricult. Sci., 10, 533–540. Search in Google Scholar

Sun, Y., Xue, B., Zhang, M., Yen, G. G., Lv, J. (2020). Automatically designing CNN architectures using the genetic algorithm for image slassification, IEEE Transactions on Cybernetics, 50 (9), 3840–3854., DOI: 10.1109/TCYB.2020.2983860.10.1109/TCYB.2020.298386032324588 Search in Google Scholar

Thapa, R., Zhang, K., Snavely, N., Belongie, S., Khan, A. (2020). The plant pathology challenge 2020 data set to classify foliar disease of apples. Appl. Plant Sci., 8 (9). DOI: 10.1002/aps3.11390.10.1002/aps3.11390752643433014634 Search in Google Scholar

Trapman, M. C. (1994). Development and evaluation of a simulation model for ascospore infections of Venturia inaequalis. Norwegian J. Agricult. Sci., Suppl., 17, 55–67. Search in Google Scholar

Vaillancourt, L., Hartman, J. (2000). Apple scab. The Plant Health Instructor. http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/AppleScab.aspx (accessed 25. 08.2021).10.1094/PHI-I-2000-1005-01 Search in Google Scholar

Xiaofei, C., Sun, G., Zhao, H., Li, M., He, D. (2020). Identification of apple tree leaf diseases based on deep learning models. Symmetry, 12 (7), 1065. DOI: 10.3390/sym12071065.10.3390/sym12071065 Search in Google Scholar

Yan, Q., Yang, B., Wang, W., Wang, B., Chen, P., Zhang, J. (2020). Apple leaf diseases recognition based on an improved convolutional neural network. Sensors, 20 (12), 3535. DOI: 10.3390/s20123535.10.3390/s20123535734949632580395 Search in Google Scholar

eISSN:
2255-890X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics