Cite

Ahmad, S. A., Chappell, P. H. (2009). Artificial prehension and the detection of object slip. In: World Congress on Medical Physics and Biomedical Engineering, 7–12 September 2009, Munich. IFMBE Proceedings, Vol. 25. Springer Nature, pp. 231–234.10.1007/978-3-642-03889-1_62Search in Google Scholar

Akhtar, A., Nguyen, M., Wan, L., Boyce, B., Slade, P., Bretl, T. (2014). Demonstration: Passive mechanical skin stretch for multiple degree-of-freedom proprioception in a hand prosthesis. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 8619. Springer Verlag, pp. 413–415.10.1007/978-3-662-44196-1_16Search in Google Scholar

Antfolk, C., Björkman, A., Frank, S. O., Sebelius, F., Lundborg, G., Rosen, B. (2012). Sensory feedback from a prosthetic hand based on airmediated pressure from the hand to the forearm skin. J. Rehab. Med., 44 (8), 702–707.10.2340/16501977-100122729800Search in Google Scholar

Antfolk, C., Cipriani, C., Carrozza, M. C., Balkenius, C., Björkman, A., Lundborg, G., Sebelius, F. (2013). Transfer of tactile input from an artificial hand to the forearm: Experiments in amputees and able-bodied volunteers. Disability Rehab. Assist. Technol.,8 (3), 249–254.10.3109/17483107.2012.71343522928878Search in Google Scholar

Antfolk, C., D’Alonzo, M., Controzzi, M., Lundborg, G., Rosen, B., Sebelius, F., Cipriani, C. (2013). Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Transact. Neural Syst. Rehab. Eng.,21 (1), 112–120.10.1109/TNSRE.2012.221798923033439Search in Google Scholar

Antfolk, C., D’Alonzo, M., Rosén, B., Lundborg, G., Sebelius, F., Cipriani, C. (2013). Sensory feedback in upper limb prosthetics. Expert Rev. Med. Devices, 10 (1), 45–54.10.1586/erd.12.6823278223Search in Google Scholar

Aszmann, O. C., Vujaklija, I., Roche, A. D., Salminger, S., Herceg, M., Sturma, A., Hruby, L. A., Pittermann, A., Hofer, Ch., Amsuess, S., Farina, D. (2016). Elective amputation and bionic substitution restore functional hand use after critical soft tissue injuries. Sci. Rep.,6, 34960.10.1038/srep34960Search in Google Scholar

Atkins, D. J., Heard, D. C. Y., Donovan, W. H. (1996). Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J. Prosth. Orth., 2–12. https://doi.org/10.1097/00008526-199600810-00003.10.1097/00008526-199600810-00003Search in Google Scholar

Badia, J., Boretius, T., Pascual-Font, A., Udina, E., Stieglitz, T., Navarro, X. (2011). Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (TIME) in the rat sciatic nerve. IEEE Transact. Biomed. Eng.,58 (8), 2324–2332.10.1109/TBME.2011.215385021571604Search in Google Scholar

Bark, K., Wheeler, J. W., Premakumar, S., Cutkosky, M. R. (2008). Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information. In: Proceedings of the Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems, Reno, NE, 13-14 March 2008, pp. 71–78.10.1109/HAPTICS.2008.4479916Search in Google Scholar

Bark, K., Wheeler, J., Shull, P., Savall, J., Cutkosky, M. (2010). Rotational skin stretch feedback: A wearable haptic display for motion. IEEE Transact. Haptics, 3 (3), 166–176.10.1109/TOH.2010.2127788071Search in Google Scholar

Benz, H. L., Yao, J., Rose, L., Olgac, O., Kreutz, K., Saha, A., Civillico, E. F. (2016). Upper extremity prosthesis user perspectives on unmet needs and innovative technology. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2016-October. Institute of Electrical and Electronics Engineers Inc., pp. 287–290.10.1109/EMBC.2016.7590696550865328268333Search in Google Scholar

Biddiss, E., Chau, T. (2007). Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthet. Orthotics Int.,31 (3), 236–256.10.1080/03093640600994581Search in Google Scholar

Björkman, A., Weibull, A., Olsrud, J., Henrik Ehrsson, H., Rosén, B., Björkman-Burtscher, I. M. (2012). Phantom digit somatotopy: A functional magnetic resonance imaging study in forearm amputees. Eur. J. Neurosci.,36 (1), 2098–2106.10.1111/j.1460-9568.2012.08099.xSearch in Google Scholar

Björkman, A., Wijk, U., Antfolk, C., Björkman-Burtscher, I., Rosén, B. (2016). Sensory qualities of the phantom hand map in the residual forearm of amputees. J. Rehab. Med.,48 (4), 365–370.10.2340/16501977-2074Search in Google Scholar

Boretius, T., Badia, J., Pascual-Font, A., Schuettler, M., Navarro, X., Yoshida, K., Stieglitz, T. (2010). A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosensors and Bioelectronics, 26 1), 62–69.10.1016/j.bios.2010.05.010Search in Google Scholar

Branner, A., Stein, R. B., Normann, R. A. (2017). Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J. Neurophysiol.,85 (4), 1585–1594.10.1152/jn.2001.85.4.1585Search in Google Scholar

Casini, S., Morvidoni, M., Bianchi, M., Catalano, M., Grioli, G., Bicchi, A. (2015). Design and realization of the CUFF. Clenching upper-limb force feedback wearable device for distributed mechano-tactile stimulation of normal and tangential skin forces. In: IEEE International Conference on Intelligent Robots and Systems. Vol. 2015. December Institute of Electrical and Electronics Engineers Inc., pp. 1186–1193.10.1109/IROS.2015.7353520Search in Google Scholar

Castro, J., Negredo, P., Avendaño, C. (2008). Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode. Brain Res.,1190 (1), 65–77.10.1016/j.brainres.2007.11.028Search in Google Scholar

Chai, G. H., Li, S., Sui, X. H., Mei, Z., He, L. W., Zhong, C. L., Lan, N. (2013). Phantom finger perception evoked with transcutaneous electrical stimulation for sensory feedback of prosthetic hand. In: International IEEE/EMBS Conference on Neural Engineering, NER, san Diego, 6–8 November, 2013. Institute of Electrical and Electronics Engineers, pp. 271–274.10.1109/NER.2013.6695924Search in Google Scholar

Chai, G., Sui, X., Li, S., He, L., Lan, N. (2015). Characterization of evoked tactile sensation in forearm amputees with transcutaneous electrical nerve stimulation. J. Neural Eng.,12 (6).10.1088/1741-2560/12/6/066002Search in Google Scholar

Chau, B., Phelan, I., Ta, P., Humbert, S., Hata, J., Tran, D. (2017). Immersive virtual reality therapy with myoelectric control for treatment-resistant phantom limb pain: Case report. Innovations in Clin. Neurosci.,14 (7–8), 3–7.Search in Google Scholar

Cheesborough, J. E., Smith, L. H., Kuiken, T. A., Dumanian, G. A. (2015). Targeted muscle reinnervation and advanced prosthetic arms. Semin. Plastic Surg.,29 (1), 62–72.10.1055/s-0035-1544166Search in Google Scholar

Chen, R., Cohen, L. G., Hallett, M. (2002). Nervous system reorganization following injury. Neuroscience, 111 (4), 761–773.10.1016/S0306-4522(02)00025-8Search in Google Scholar

Cho, Y., Liang, K., Folowosele, F., Miller, B., Thakor, N. V. (2007). Wireless temperature sensing cosmesis for prosthesis. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, 13–15 June 2007, Noordwijk. Institute of Electrical and Electronics Engineers, pp. 672–677.10.1109/ICORR.2007.4428497Search in Google Scholar

Chortos, A., Liu, J., Bao, Z. (2016). Pursuing prosthetic electronic skin. Nature Mater.,15, 937–950.10.1038/nmat467127376685Search in Google Scholar

Cipriani, C., Controzzi, M., Carrozza, M. C. (2010). Objectives, criteria and methods for the design of the SmartHand transradial prosthesis. Robotica, 28 (6), 919–927.10.1017/S0263574709990750Search in Google Scholar

Cipriani, C., Dalonzo, M., Carrozza, M. C. (2012). A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE Transactions on Biomedical Engineering, 59 (2), 400–408.10.1109/TBME.2011.217334222042125Search in Google Scholar

Clemente, F., D’Alonzo, M., Controzzi, M., Edin, B. B., Cipriani, C. (2016). Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Transact. Neur. Syst. Rehab. Eng., 24 (12), 1314–1322.10.1109/TNSRE.2015.250058626584497Search in Google Scholar

Clemente, F., Dosen, S., Lonini, L., Markovic, M., Farina, D., Cipriani, C. (2017). Humans can integrate augmented reality feedback in their sensorimotor control of a robotic hand. IEEE Transact. Human-Machine Syst.,47 (4), 583–589.10.1109/THMS.2016.2611998Search in Google Scholar

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., Schwartz, A. B. (2013). High-performance neuro-prosthetic control by an individual with tetraplegia. The Lancet, 381 (9866), 557–564.10.1016/S0140-6736(12)61816-9Search in Google Scholar

Collins, K. L., Guterstam, A., Cronin, J., Olson, J. D., Ehrsson, H. H., Ojemann, J. G. (2017). Ownership of an artificial limb induced by electrical brain stimulation. Proceed. Nat. Acad. Sci. USA,114 (1), 166–171.10.1073/pnas.1616305114522439527994147Search in Google Scholar

Culjat, M. O., Son, J., Fan, R. E., Wottawa, C., Bisley, J. W., Grundfest, W. S., Dutson, E. P. (2010). Remote tactile sensing glove-based system. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10. pp. 1550–1554.10.1109/IEMBS.2010.5626824Search in Google Scholar

D’Alonzo, M., Clemente, F., Cipriani, C. (2015). Vibrotactile stimulation promotes embodiment of an Alien hand in amputees with phantom sensations. IEEE Transact. Neural Syst. Rehab. Eng.,23 (3), 450–457.10.1109/TNSRE.2014.233795225051556Search in Google Scholar

D’Alonzo, M., Dosen, S., Cipriani, C., Farina, D. (2014). HyVE-hybrid vibro-electrotactilestimulation is an efficient approachto multi-channel sensory feedback. IEEE Transact. Haptics, 7(2), 181–190.10.1109/TOH.2013.5224968382Search in Google Scholar

D’Alonzo, M., Dosen, S., Cipriani, C., Farina, D. (2014). HyVE: Hybrid vibro-electrotactile stimulation for sensory feedback and substitution in rehabilitation. IEEE Transact. Neural Syst. Rehab. Eng.,22 (2), 290–301.10.1109/TNSRE.2013.226648223782817Search in Google Scholar

D’Anna, E., Petrini, F. M., Artoni, F., Popovic, I., Simaniã, I., Raspopovic, S., Micera, S. (2017). A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci. Rep.,7 (1), 10930.10.1038/s41598-017-11306-wSearch in Google Scholar

Davis, T. S., Wark, H. A. C., Hutchinson, D. T., Warren, D. J., O’Neill, K., Scheinblum, T., Greger, B. (2016). Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J. Neural Eng.,13 (3), 036001.10.1088/1741-2560/13/3/03600127001946Search in Google Scholar

Del Valle, J., Navarro, X. (2013). Interfaces with the peripheral nerve for the control of neuroprostheses. In: Int. Rev. Neurobiol.,109, 63–83.10.1016/B978-0-12-420045-6.00002-XSearch in Google Scholar

Dhillon, G. S., Lawrence, S. M., Hutchinson, D. T., Horch, K. W. (2004). Residual function in peripheral nerve stumps of amputees: Implications for neural control of artificial limbs. J. Hand Surg.,29 (4), 605–615.10.1016/j.jhsa.2004.02.00615249083Search in Google Scholar

Di Iorio, R., Granata, G., Miraglia, F., Vecchio, F., Rossini, P. M. (2018). T155. Brain reactions following the use of robotic hand prosthesis in human amputees. Clin. Neurophysiol.,129, e62.10.1016/j.clinph.2018.04.156Search in Google Scholar

Dietrich, C., Walter-Walsh, K., Preißler, S., Hofmann, G. O., Witte, O. W., Miltner, W. H. R., Weiss, T. (2012). Sensory feedback prosthesis reduces phantom limb pain: Proof of a principle. Neurosci. Lett.,507 (2), 97–100.10.1016/j.neulet.2011.10.06822085692Search in Google Scholar

Dosen, S., Schaeffer, M. C., Farina, D. (2014). Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback. J. NeuroEng. Rehab.,11 (1), 138.10.1186/1743-0003-11-138418278925224266Search in Google Scholar

Ehrsson, H. H., Rosén, B., Stockselius, A., Ragnö, C., Köhler, P., Lundborg, G. (2008). Upper limb amputees can be induced to experience a rubber hand as their own. Brain, 131 (12), 3443–3452.10.1093/brain/awn297263920219074189Search in Google Scholar

Flesher, S. N., Collinger, J. L., Foldes, S. T., Weiss, J. M., Downey, J. E., Tyler-Kabara, E. C., Bensmaia, S. J., Schwartz, A. B., Boninger, M. L., Gaunt, R. A. (2016). Intracortical microstimulation of human somato-sensory cortex. Sci. Translat. Med.,8 (361).10.1126/scitranslmed.aaf8083Search in Google Scholar

Gallo, S., Cucu, L., Thevenaz, N., Sengül, A., Bleuler, H. (2014). Design and control of a novel thermo-tactile multimodal display. In: IEEE Haptics Symposium, HAPTICS, 23–26 February 2014, Houslon, Tx. IEEE Computer Society, pp. 75–81.10.1109/HAPTICS.2014.6775436Search in Google Scholar

Gart, M. S., Souza, J. M., Dumanian, G. A. (2015). Targeted muscle reinnervation in the upper extremity amputee: A technical roadmap. J. Hand Surg. Amer.,40 (9), 1877–1888.10.1016/j.jhsa.2015.06.11926314220Search in Google Scholar

Geethanjali, P. (2016). Myoelectric control of prosthetic hands: State-ofthe-art review. Med. Dev. Evidence Res.,9 (1), 247–255.10.2147/MDER.S91102496885227555799Search in Google Scholar

Godfrey, S. B., Bianchi, M., Bicchi, A., Santello, M. (2016). Influence of force feedback on grasp force modulation in prosthetic applications: A preliminary study. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 16–20 August 2016, Orlando, Fl. Vol. 2016. Institute of Electrical and Electronics Engineers Inc., pp. 5439–544210.1109/EMBC.2016.7591957570829528269488Search in Google Scholar

Graczyk, E. L., Resnik, L., Schiefer, M. A., Schmitt, M. S., Tyler, D. J. (2018). Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Scientific Reports, 8 (1), 9866.10.1038/s41598-018-26952-x602611829959334Search in Google Scholar

Grinberg, Y., Schiefer, M. A., Tyler, D. J., Gustafson, K. J. (2008). Fascicular perineurium thickness, size, and position affect model predictions of neural excitation. IEEE Transact. Neural Syst. Rehab. Eng.,16 (6), 572–581.10.1109/TNSRE.2008.2010348291842119144589Search in Google Scholar

Hammock, M. L., Chortos, A., Tee, B. C., Tok, J. B. and Bao, Z. (2013). 25th anniversary article: The evolution of electronic skin (E?Skin): A brief history, design considerations, and recent progress. Adv. Mater., 25, 5997–6038.10.1002/adma.20130224024151185Search in Google Scholar

Hartmann, C., Došen, S., Amsuess, S., Farina, D. (2015). Closed-loop control of myoelectric prostheses with electrotactile feedback: Influence of stimulation artifact and blanking. IEEE Transact. Neural Syst. Rehab. Eng.,23 (5), 807–816.10.1109/TNSRE.2014.235717525222951Search in Google Scholar

Hasson, C. J., Manczurowsky, J. (2015). Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm. J. NeuroEng. Rehab., 12 (1), 31.10.1186/s12984-015-0025-5439157825879430Search in Google Scholar

Hebert, J. S., Elzinga, K., Chan, K. M., Olson, J., Morhart, M. (2014). Updates in targeted sensory reinnervation for upper limb amputation. Curr. Surg. Rep.,2 (3), 45.10.1007/s40137-013-0045-7Search in Google Scholar

Hebert, J. S., Olson, J. L., Morhart, M. J., Dawson, M. R., Marasco, P. D., Kuiken, T. A., Chan, K. M. (2014). Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Transact. Neur. Syst. Rehab. Eng.,22 (4), 765–773.10.1109/TNSRE.2013.229490724760915Search in Google Scholar

Hruby, L. A., Pittermann, A., Sturma, A., Aszmann, O. C. (2018). The Vienna psychosocial assessment procedure for bionic reconstruction in patients with global brachial plexus injuries. PLoS ONE, 13 (1), e0189592.10.1371/journal.pone.0189592575198929298304Search in Google Scholar

Hruby, L. A., Sturma, A., Mayer, J. A., Pittermann, A., Salminger, S., Aszmann, O. C. (2017). Algorithm for bionic hand reconstruction in patients with global brachial plexopathies. J. Neurosurg.,127 (5), 1163–1171.10.3171/2016.6.JNS1615428093018Search in Google Scholar

Isakoviã, M., Beliã, M., Štrbac, M., Popoviã, I., Došen, S., Farina, D., Keller, T. (2016). Electrotactile feedback improves performance and facilitates learning in the routine grasping task. Eur. J. Translat. Myol.,26 (3), 6069.10.4081/ejtm.2016.6069512896927990236Search in Google Scholar

Jenmalm, P., Birznieks, I., Goodwin, A. W., Johansson, R. S. (2003). Influence of object shape on responses of human tactile afferents under conditions characteristic of manipulation. Eur. J. Neurosci.,18 (1), 164–176.10.1046/j.1460-9568.2003.02721.x12859350Search in Google Scholar

Jiang, L., Huang, Q., Zhao, J., Yang, D., Fan, S., Liu, H. (2014). Noise cancellation for electrotactile sensory feedback of myoelectric forearm pros-theses. In: 2014 IEEE International Conference on Information and Automation, ICIA 2014, 28–30 July 2014, Hailar. Institute of Electrical and Electronics Engineers Inc., pp. 1066–107110.1109/ICInfA.2014.6932807Search in Google Scholar

Johansson, R. S., Flanagan, J. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10, 345–359.10.1038/nrn262119352402Search in Google Scholar

Jorgovanovic, N., Dosen, S., Djozic, D. J., Krajoski, G., Farina, D. (2014). Virtual grasping: Closed-loop force control using electrotactile feedback. Comput. Mathem. Meth. Med.,2014, 1–13.10.1155/2014/120357390998024516504Search in Google Scholar

Kaczmarek, K. A., Webster, J. G., Bach-y-Rita, P., Tompkins, W. J. (1991). Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Transact. Biomed. Eng.,38 (1), 1–16.10.1109/10.682042026426Search in Google Scholar

Kikkert, S., Kolasinski, J., Jbabdi, S., Tracey, I., Beckmann, C. F., Berg, H. J., Makin, T. R. (2016). Revealing the neural fingerprints of a missing hand. ELife, 5, e15292.10.7554/eLife.15292.016Search in Google Scholar

Klaes, C., Shi, Y., Kellis, S., Minxha, J., Revechkis, B., Andersen, R. A. (2014). A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback. J. Neural Eng.,11 (5), 056024.10.1088/1741-2560/11/5/056024441097325242377Search in Google Scholar

Kovacs, G. T. A., Storment, C. W., Rosen, J. M. (1992). Regeneration microelectrode array for peripheral nerve recording and stimulation. IEEE Transact. Biomed. Eng.,39 (9), 893–902.10.1109/10.2564221473818Search in Google Scholar

Kuiken, T. A., Barlow, A. K., Hargrove, L. J., Dumanian, G. A. (2017). Targeted muscle reinnervation for the upper and lower extremity. Techn. Orthopaed.,32 (2), 109–116.10.1097/BTO.0000000000000194544841928579692Search in Google Scholar

Kuiken, T. A., Li, G., Lock, B. A., Lipschutz, R. D., Miller, L. A., Stubblefield, K. A., Englehart, K. B. (2009). Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA -Journal of the American Medical Association, 301 (6), 619–628.10.1001/jama.2009.116303616219211469Search in Google Scholar

Kuiken, T. A., Miller, L. A., Lipschutz, R. D., Lock, B. A., Stubblefield, K., Marasco, P. D., Dumanian, G. A. (2007). Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study. Lancet, 369 (9559), 371–380.10.1016/S0140-6736(07)60193-7Search in Google Scholar

Lago, N., Ceballos, D., J Rodríguez, F., Stieglitz, T., Navarro, X. (2005). Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials, 26 (14), 2021–2031.10.1016/j.biomaterials.2004.06.02515576176Search in Google Scholar

LeBlanc, M. (2008). “Give Hope-Give a Hand”, The LN-4 prosthetic hand. Available at: https://dokumen.tips/documents/maurice-leblanc-msme-cp-give-hope-give-a-hand-the-leblanc-msme-cp-give.html (accessed 10.09.2020).Search in Google Scholar

Ledbetter, N. M., Ethier, C., Oby, E. R., Hiatt, S. D., Wilder, A. M., Ko, J. H., Miller, L. E., Wilder, A. M., Agnew, S. P., Clark, G. A. (2012). Intrafascicular stimulation of monkey arm nerves evokes coordinated grasp and sensory responses. J. Neurophysiol.,109 (2), 580–590.10.1152/jn.00688.2011Search in Google Scholar

Leonardis, D., Solazzi, M., Bortone, I., Frisoli, A. (2015). A wearable fingertip haptic device with 3 DoF asymmetric 3-RSR kinematics. In: IEEE World Haptics Conference, WHC 2015, 22–26 June 2015, Evanston, Il.Institute of Electrical and Electronics Engineers Inc., pp. 388–393.10.1109/WHC.2015.7177743Search in Google Scholar

Leventhal, D. K., Durand, D. M. (2003). Subfascicle stimulation selectivity with the flat interface nerve electrode. Ann. Biomed. Eng.,31 (6), 643–652.10.1114/1.156926612797613Search in Google Scholar

Li, M., Zhang, D., Chen, Y., Chai, X., He, L., Chen, Y., Guo, J., Sui, X. (2018). Discrimination and recognition of phantom finger sensation through transcutaneous electrical nerve stimulation. Frontiers Neurosci.,12, 283.10.3389/fnins.2018.00283593701029760647Search in Google Scholar

Liu, X. X., Chai, G. H., Qu, H. E., Lan, N. (2015). A sensory feedback system for prosthetic hand based on evoked tactile sensation. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 25–29 August 2015, Milan. Vol. 2015. Institute of Electrical and Electronics Engineers Inc., pp. 2493–2496.10.1109/EMBC.2015.731889826736798Search in Google Scholar

Lotfi, P., Garde, K., Chouhan, A. K., Bengali, E., Romero-Ortega, M. I. (2011). Modality-specific axonal regeneration: Toward selective regenerative neural interfaces. Frontiers Neuroeng.,4, 11.10.3389/fneng.2011.00011319153122016734Search in Google Scholar

Markovic, M., Karnal, H., Graimann, B., Farina, D., Dosen, S. (2017). GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses. J. Neural Eng.,14 3), 036007.10.1088/1741-2552/aa620a28355147Search in Google Scholar

Meli, L., Hussain, I., Aurilio, M., Malvezzi, M., O’Malley, M. K., Prattichizzo, D. (2018). The hBracelet: A wearable haptic device for the distributed mechanotactile stimulation of the upper limb. IEEE Robot. Automat. Lett.,3 (3), 2198–2205.10.1109/LRA.2018.2810958Search in Google Scholar

Mohamad Hanif, N. H. H., Nik Hashim, N. N., Chappell, P. H., White, N. M., Cranny, A. W. (2016). Tactile to vibrotactile sensory feedback interface for prosthethic hand users. In: IEEE-EMBS Conference on Biomedical Engineering and Sciences, 4–8 December 2016, Kuala Lumpur. Institute of Electrical and Electronics Engineers Inc., pp. 326–330.10.1109/IECBES.2016.7843467Search in Google Scholar

Morita, T., Kikuchi, T., Ishii, C. (2016). Development of sensory feedback device for myoelectric prosthetic hand to provide hardness of objects to users. J. Robotics Mechatron.,28 (3), 361–370.10.20965/jrm.2016.p0361Search in Google Scholar

Nabeel, M., Aqeel, K., Ashraf, M. N., Awan, M. I., Khurram, M. (2016). Vibrotactile stimulation for 3D printed prosthetic hand. In: 2nd International Conference on Robotics and Artificial Intelligence, 1–2 November 2016, Rawalpindi. Institute of Electrical and Electronics Engineers, pp. 202–207.10.1109/ICRAI.2016.7791254Search in Google Scholar

Navarro, X., Krueger, T. B., Lago, N., Micera, S., Stieglitz, T., Dario, P. (2005). A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Periph. Nervous Syst.,10 (3), 229–258.10.1111/j.1085-9489.2005.10303.x16221284Search in Google Scholar

Ninu, A., Dosen, S., Muceli, S., Rattay, F., Dietl, H., Farina, D. (2014). Closed-loop control of grasping with a myoelectric hand prosthesis: Which are the relevant feedback variables for force control? IEEE Transact. Neural Syst. Rehab. Eng.,22 (5), 1041–1052.10.1109/TNSRE.2014.231843124801625Search in Google Scholar

O’Doherty, J. E., Lebedev, M. A., Ifft, P. J., Zhuang, K. Z., Shokur, S., Bleuler, H., Nicolelis, M. A. L. (2011). Active tactile exploration using a brain-machine-brain interface. Nature, 479 (7372), 228–231.10.1038/nature10489Search in Google Scholar

Oddo, C. M., Raspopovic, S., Artoni, F., Mazzoni, A., Spigler, G., Petrini, F., Giambattistelli, F., Vecchio, F., Miraglia, F., Zollo, L. et al. (2016). Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. ELife, 5, e09148.10.7554/eLife.09148479896726952132Search in Google Scholar

Osumi, M., Inomata, K., Inoue, Y., Otake, Y., Morioka, S., Sumitani, M. (2019). Characteristics of phantom limb pain alleviated with virtual reality rehabilitation. Pain Med.,20 (5), 1038–1046.10.1093/pm/pny26930576543Search in Google Scholar

Peerdeman, B., Boere, D., Witteveen, H., in ’t Veld, R. H., Hermens, H., Stramigioli, S., Misra, S. (2011). Myoelectric forearm prostheses: State of the art from a user-centered perspective. J. Rehab. Res. Devel.,48 (6), 719–737.10.1682/JRRD.2010.08.016121938658Search in Google Scholar

Ramachandran, V. S., Hirstein, W. (1998). The perception of phantom limbs. The D. O. Hebb lecture. Brain, 121 (9), 1603–1630.10.1093/brain/121.9.1603Search in Google Scholar

Ramachandran, V. S., Rogers-Ramachandran, D. (2000). Phantom limbs and neural plasticity. Arch. Neurol.,57 (3), 317–320.10.1001/archneur.57.3.31710714655Search in Google Scholar

Raspopovic, S., Capogrosso, M., Petrini, F. M., Bonizzato, M., Rigosa, J., Pino, G. D., … Micera, S. (2014). Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Translat. Med.,6 (222), 222ra19.10.1126/scitranslmed.3006820Search in Google Scholar

Raveh, E., Friedman, J., Portnoy, S. (2018). Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand. Assistive Technol.,30 (5), 274–280.10.1080/10400435.2017.132380928628379Search in Google Scholar

Reza Motamedi, M., Otis, M., Duchaine, V. (2017). The impact of simultaneously applying normal stress and vibrotactile stimulation for feedback of exteroceptive information. J. Biomechan. Eng.,139 (6), 061004.10.1115/1.403641728395001Search in Google Scholar

Rosenbaum-Chou, T., Daly, W., Austin, R., Chaubey, P., Boone, D. A. (2016). Development and real world use of a vibratory haptic feedback system for upper-limb prosthetic users. J. Prosthetics Orthotics, 28 (4), 136–144.10.1097/JPO.0000000000000107Search in Google Scholar

Saal, H. P., Bensmaia, S. J. (2015). Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia, 79, 344–353.10.1016/j.neuropsychologia.2015.06.01026092769Search in Google Scholar

Schweisfurth, M. A., Markovic, M., Dosen, S., Teich, F., Graimann, B., Farina, D. (2016). Electrotactile EMG feedback improves the control of pros-thesis grasping force. J. Neur. Eng.,13 (5), 056010.10.1088/1741-2560/13/5/056010Search in Google Scholar

Serino, A., Akselrod, M., Salomon, R., Martuzzi, R., Blefari, M. L., Canzoneri, E., Blanke, O. (2017). Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation. Brain, 140 (11), 2993–3011.10.1093/brain/awx24229088353Search in Google Scholar

Shi, P., Shen, X. (2015). Sensation feedback and muscle response of electrical stimulation on the upper limb skin: A case study. In: Proceedings of the 2015 7th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA, 13-14 June 2015, Nanchang. Institute of Electrical and Electronics Engineers Inc., pp. 969–972.10.1109/ICMTMA.2015.236Search in Google Scholar

Snow, P. W., Sedki, I., Sinisi, M., Comley, R., Loureiro, R. C. V. (2017). Robotic therapy for phantom limb pain in upper limb amputees. In: IEEE 15th International Conference on Rehabilitation Robotics, 17–20 July 2017, London . IEEE Computer Society, pp. 1019–1024.10.1109/ICORR.2017.8009383Search in Google Scholar

Stephens-Fripp, B., Alici, G., Mutlu, R. (2018). A review of non-invasive sensory feedback methods for transradial prosthetic hands. IEEE,6, 6878–6899.10.1109/ACCESS.2018.2791583Search in Google Scholar

Stepp, C. E., An, Q., Matsuoka, Y. (2012). Repeated training with augmentative vibrotactile feedback increases object manipulation performance. PLoS ONE, 7 (2), e32743.10.1371/journal.pone.0032743Search in Google Scholar

Štrbac, M., Beliã, M., Isakoviã, M., Kojiã, V., Bijeliã, G., Popoviã, I., Radotic, M., Došen, S., Markovic, M., Farina, D., Keller, T. (2016). Integrated and flexible multichannel interface for electrotactile stimulation. J. Neur. Eng.,13 (4), 046014.10.1088/1741-2560/13/4/046014Search in Google Scholar

Svensson, P., Wijk, U., Björkman, A., Antfolk, C. (2017). A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev. Med. Devices, 14 (6), 439–447.10.1080/17434440.2017.1332989Search in Google Scholar

Tan, D. W., Schiefer, M. A., Keith, M. W., Anderson, J. R., Tyler, J., Tyler, D. J. (2014). A neural interface provides long-term stable natural touch perception. Sci.Transl. Med.,6 (257), 257ra138.10.1126/scitranslmed.3008669Search in Google Scholar

Tyler, D. J., Durand, D. M. (2002). Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Transact. Neural Syst. Rehab. Eng.,10 (4), 294–303.10.1109/TNSRE.2002.806840Search in Google Scholar

Ueda, Y., Ishii, C. (2017). Development of a feedback device of temperature sensation for a myoelectric prosthetic hand by using Peltier element. In: International Conference on Advanced Mechatronic Systems, ICAMechS, 30 November – 3 December 2016, Melbourne. IEEE Computer Society, pp. 488–493.10.1109/ICAMechS.2016.7813497Search in Google Scholar

Valle, G., Petrini, F. M., Strauss, I., Iberite, F., D’Anna, E., Granata, G., Controzzi, M., Ciporiani, C., Stieglitz, T., Rossini, P. M., Mazzoni, A., Raspopovic, S., Micera, S. (2018). Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Sci. Rep.,8 (1), 16666.10.1038/s41598-018-34910-wSearch in Google Scholar

Van Den Heiligenberg, F. M. Z., Orlov, T., MacDonald, S. N., Duff, E. P., Henderson Slater, D., Beckmann, C. F., Johansen-Berg, H., Culham, J. C., Makin, T. R. (2018). Artificial limb representation in amputees. Brain, 141 (5), 1422–1433.10.1093/brain/awy054Search in Google Scholar

Walker, C. F., Lockhead, G. R., Markle, D. R., McElhaney, J. H. (1977). Parameters of stimulation and perception in an artificial sensory feedback system. J. Bioeng.,1 (3), 251–256.Search in Google Scholar

Wall, J. T., Xu, J., Wang, X. (2002, September). Human brain plasticity: An emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res. Rev.,39 (2–3), 181–215.10.1016/S0165-0173(02)00192-3Search in Google Scholar

Wheeler, J., Bark, K., Savall, J., Cutkosky, M. (2010). Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Transact. Neural Syst. Rehab. Eng.,18 (1), 58–66.10.1109/TNSRE.2009.203960220071271Search in Google Scholar

Witteveen, H. J. B., Droog, E. A., Rietman, J. S., Veltink, P. H. (2012). Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Transact. Biomed. Eng.,59 (8), 2219–2226.10.1109/TBME.2012.220067822645262Search in Google Scholar

Witteveen, H. J. B., Rietman, H. S., Veltink, P. H. (2015). Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthetics Orthotics Int.,39 (3), 204–212.10.1177/030936461452226024567348Search in Google Scholar

Xu, B., Akhtar, A., Liu, Y., Chen, H., Yeo, W. H., Park, S., Rogers, J. A. (2016). An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Advanced Materials, 28 (22), 4462–4471.10.1002/adma.201504155483367526469201Search in Google Scholar

Xu, H., Zhang, D., Huegel, J. C., Xu, W., Zhu, X. (2016). Effects of different tactile feedback on myoelectric closed-loop control for grasping based on electrotactile stimulation. IEEE Transact. Neural Syst. Rehab. Eng.,24 (8), 827–836.10.1109/TNSRE.2015.247815326372430Search in Google Scholar

Yamada, H., Yamanoi, Y., Wakita, K., Kato, R. (2016). Investigation of a cognitive strain on hand grasping induced by sensory feedback for myoelectric hand. In: Proceedings of the IEEE International Conference on Robotics and Automation, 16–21 May 2016, Stockholm. Institute of Electrical and Electronics Engineers Inc., pp. 3549–3554.10.1109/ICRA.2016.7487537Search in Google Scholar

Zhang, D., Xu, H., Shull, P. B., Liu, J., Zhu, X. (2015). Somatotopical feedback versus non-somatotopical feedback for phantom digit sensation on amputees using electrotactile stimulation. J. NeuroEng. Rehab.,12 (1).10.1186/s12984-015-0037-1441627625929589Search in Google Scholar

Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., Brookmeyer, R. (2008). Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehab.,89 (3), 422–429.10.1016/j.apmr.2007.11.00518295618Search in Google Scholar

Zuo, K. J., Willand, M. P., Ho, E. S., Ramdial, S., Borschel, G. H. (2018). Targeted muscle reinnervation. Plastic Reconstruct. Surg.,141 (6), 1447–1458.10.1097/PRS.000000000000437029579026Search in Google Scholar

eISSN:
1407-009X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics