Cite

Ali, S., Farooq, M. A., Yasmeen, T., Hussain, S., Arif, M. S., Abbas, F., Bharwana, S. A., Zhang, G. (2013). The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicol. Environ. Safety, 89, 66–72.10.1016/j.ecoenv.2012.11.01523260243Search in Google Scholar

Balakhnina, T., Borkowska, A. (2013). Effects of silicon on plant resistance to environmental stresses. Int. Agrophys., 27 (2), 225–232.10.2478/v10247-012-0089-4Search in Google Scholar

Bent, E. (2014). Silicon Solutions. Helping plants to help themselves. Sestante Edizioni, Bergamo. 183 pp.Search in Google Scholar

Chen, W., Yao, X., Cai, K., Chen, J. (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res., 142 (1), 67–76.10.1007/s12011-010-8742-x20532668Search in Google Scholar

Currie, H. A., Perry, C. C. (2007). Silica in plants: Biological, biochemical and chemical studies. Ann. Bot., 100 (7), 1383–1389.10.1093/aob/mcm247275922917921489Search in Google Scholar

Datnoff, L. E., Snyder, G. H., Korndörfer, G. H. (eds.) (2001). Silicon in Agriculture Vol. 8.. Elsevier. 403 pp.Search in Google Scholar

D’Imperio, M., Renna, M., Cardinali, A., Buttaro, D., Santamaria, P., Serio, F. (2016). Silicon biofortification of leafy vegetables and its bioaccessibility in the edible parts. J. Sci. Food Agricult., 96 (3), 751–756.10.1002/jsfa.714225690676Search in Google Scholar

Durner, E. F. (2013). Principles of Horticultural Physiology. Gutenberg Press Ltd., Tarxien, Malta. 405 pp.10.1079/9781780643069.0000Search in Google Scholar

Epstein, E. (2009). Silicon: Its manifold roles in plants. Ann. Appl. Biol., 155 (2), 155–160.10.1111/j.1744-7348.2009.00343.xSearch in Google Scholar

Farooq, M. A., Dietz, K. J. (2015). Silicon as versatile player in plant and human biology: Overlooked and poorly understood. Frontiers Plant Sci., 6, 994.10.3389/fpls.2015.00994464190226617630Search in Google Scholar

Gao, D., Cai, K., Chen, J., Luo, S., Zeng, R., Yang, J., Zhu, X. (2011). Silicon enhances photochemical efficiency and adjusts mineral nutrient absorption in Magnaporthe oryzae infected rice plants. Acta Physiol. Plant., 33 (3), 675–682.10.1007/s11738-010-0588-5Search in Google Scholar

Gomes, F. B., Moraes, J. C. D., Santos, C. D. D., Goussain, M. M. (2005). Resistance induction in wheat plants by Si and aphids. Scientia Agricola, 62 (6), 547–551.10.1590/S0103-90162005000600006Search in Google Scholar

Greger, M., Landberg, T., Vaculik, M., Lux, A. (2011). Silicon influences nutrient status in plants. In: Proceedings of the 5th International Conference on Silicon in Agriculture. 13–18 September 2011, Beijing, China. Book of Abstracts, pp. 57–58.Search in Google Scholar

Guntzer, F., Keller, C., Meunier, J. D. (2012). Benefits of plant Si for crops: A review. Agron. Sust. Devel., 32 (1), 201–213.10.1007/s13593-011-0039-8Search in Google Scholar

Haneklaus, S. H., Bloem, E., Schnug, E. (2018). Hungry plants: A short treatise on how to feed crops under stress. Agriculture, 8 (3), 1–13.10.3390/agriculture8030043Search in Google Scholar

Hashemi, A., Abdolzadeh, A., Sadeghipour, H. R. (2010). Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Sci. Plant Nutr., 56 (2), 244–253.10.1111/j.1747-0765.2009.00443.xSearch in Google Scholar

Jana, S., Jeong, B. R. (2014). Silicon: The most under-appreciated element in horticultural crops. Trends Horticult. Res., 4 (1), 1–19.10.3923/thr.2014.1.19Search in Google Scholar

Laing, M. D., Gatarayiha, M. C., Adandonon, A. (2006). Silicon use for pest control in agriculture: A review. Proc. South Afri. Sugar Technol. Assoc., 80, 278–286.Search in Google Scholar

Liang, Y., Si, J., Römheld, V. (2005). Silicon uptake and transport is an active process in Cucumis sativus. New Phytologist, 167 (3), 797–804.10.1111/j.1469-8137.2005.01463.x16101916Search in Google Scholar

Liang, Y., Sun, W., Zhu, Y. G., Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Poll., 147 (2), 422–428.10.1016/j.envpol.2006.06.00816996179Search in Google Scholar

Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr., 50 (1), 11–18.10.1080/00380768.2004.10408447Search in Google Scholar

Ma, J. F. Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends Plant Sci., 11 (8), 392–397.10.1016/j.tplants.2006.06.00716839801Search in Google Scholar

Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Kundu, S., Rao, A. S. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proc. Nat. Acad. Sci. India, Section B: Biol. Sci., 84 (3), 505–518.10.1007/s40011-013-0270-ySearch in Google Scholar

Olle, M. (2013). The effect of effective microorganisms (Em) on the yield, storability and calcium content in swede. XVII. In: International Plant Nutrition Colloquium and Boron Satellite Meeting Proceedings Book. Istanbul/Turkey, pp. 714–715.Search in Google Scholar

Olle, M. (2014). The effect of silicon on the organically grown cucumber transplants growth and quality. In: Proceedings of 16th World Fertilizer Congress of CIEC. CIEC, Rio de Janeiro, pp. 90–92.Search in Google Scholar

Olle, M. (2015). Methods to Avoid Calcium Deficiency on Greenhouse Grown Leafy Crops. LAP LAMBERT Academic Publishing. 118 pp.Search in Google Scholar

Olle, M., Schnug, E. (2016a). The effect of foliar applied silicic acid on growth and chemical composition of tomato transplants. J. Kulturpflanzen, 68 (8), 241–243.Search in Google Scholar

Olle, M., Schnug, E. (2016b). The influence of foliar applied silicic acid on N, P, K, Ca and Mg concentrations in field peas. J. Kulturpflanzen, 68 (1), 7–10.Search in Google Scholar

Olle, M. (2017). The effect of silicon on the organically grown iceberg lettuce growth and quality. Agraarteadus J. Agr. Sci.,28 (2), 82–86.Search in Google Scholar

Raven, J. A. (2003). Cycling silicon — the role of accumulation in plants. New Phytol., 158 (3), 419–421.10.1046/j.1469-8137.2003.00778.xSearch in Google Scholar

Reddy, K. S., Menary, R, C. (1990). Nitrate reductase and nitrate accumulation in relation to nitrate toxicity in Boronia megastigma. Physiol. Plant., 78 (3), 430–434.10.1111/j.1399-3054.1990.tb09059.xSearch in Google Scholar

Reynolds, O. L., Keeping, M. G., Meyer, J. H. (2009). Si-augmented resistance of plants to herbivorous insects: A review. Ann. Appl. Biol., 155 (2), 171–186.10.1111/j.1744-7348.2009.00348.xSearch in Google Scholar

Reynolds, O. L., Padula, M. P., Zeng, R., Gurr, G. M. (2016). Silicon: Potential to promote direct and indirect effects on plant defence against arthropod pests in agriculture. Frontiers in Plant Sci., 7, 744.10.3389/fpls.2016.00744Search in Google Scholar

Richmond, K. E., Sussman, M. (2003). Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol., 6 (3), 268–272.10.1016/S1369-5266(03)00041-4Search in Google Scholar

Rizwan, M., Ali, S., Ibrahim, M., Farid, M., Adrees, M., Bharwana, S. A., Zia-ur-Rehman, M., Qayyum, M. F., Abbas, F. (2015). Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environ. Sci. Poll. Res., 22 (20), 15416–15431.10.1007/s11356-015-5305-x26335528Search in Google Scholar

Rodrigues, F. A., Datnoff, L. E. (2005). Silicon and rice disease management. Fitopatol. Brasil., 30 (5), 457–469.10.1590/S0100-41582005000500001Search in Google Scholar

Romero-Aranda, M. R., Jurado, O., Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol., 163 (8), 847–855.10.1016/j.jplph.2005.05.01016777532Search in Google Scholar

Smith, A. (2011). Silicon’s key role in plant growth. Austral. Grain, March-April, pp. 35.Search in Google Scholar

Snyder, G. H., Matichenkov, V. V., Datnoff, L. E. (2006). Silicon. In: Barker, A., Pilbeam, D. (eds.). Handbook of Plant Nutrition. Taylor and Frances, Boca Raton, pp. 551–568.10.1201/9781420014877.ch19Search in Google Scholar

Tubana, B. S., Babu, T., Datnoff, L. E. (2016). A review of Si in soils and plants and its role in US agriculture: History and future perspectives. Soil Sci., 181 (9/10), 393–411.10.1097/SS.0000000000000179Search in Google Scholar

Zhu, Y., Gong, H. (2014). Beneficial effects of Si on salt and drought tolerance in plants. Agron. Susta. Devel., 34 (2), 455–472.10.1007/s13593-013-0194-1Search in Google Scholar

Vaculík, M., Landberg, T., Greger, M., Luxová, M., Stoláriková, M., Lu, A. (2012). Si modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann. Bot., 110 (2), 433–443.10.1093/aob/mcs039339463722455991Search in Google Scholar

Vasanthi, N., Saleena, L. M., Raj, S. A. (2014). Si in crop production and crop protection. A review. Agricult. Rev., 35 (1), 14–23.10.5958/j.0976-0741.35.1.002Search in Google Scholar

eISSN:
1407-009X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics