Cite

Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Bjorksten, B., Engstrand, L., Jenmalm, M. C. (2014). Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy, 44 (6), 842–850.10.1111/cea.1225324330256Search in Google Scholar

Aguilera-Méndez, A. (2019). Nonalcoholic hepatic steatosis: A silent disease. Rev. Med. Inst. Mex. Seguro Soc., 56 (6), 544–549.Search in Google Scholar

Aller, R., De Luis, D. A., Izaola, O., Conde, R., Gonzalez Sagrado, M., Primo, D., De La Fuente, B., Gonzalez, J. (2011). Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: A double blind randomized clinical trial. Eur. Rev. Med. Pharmacol. Sci., 15 (9), 1090–1095.Search in Google Scholar

Anonymous (2011). Codex Alimentarius: Milk and milk products. 2nd ed. World Health Organization, Food and Agriculture Organization of the United Nations, Rome. 248 pp.Search in Google Scholar

Anonymous (2019a). Food data, version 4, 2019, National Food Institute, Technical University of Denmark. https://frida.fooddata.dk/?lang=en (accessed 10 March 2020).Search in Google Scholar

Anonymous (2019b). FoodData Central, 2019. Department of Agriculture, Agricultural Research Service. fdc.nal.usda.gov (accessed 10 March 2020).Search in Google Scholar

Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der, Veeken, J., deRoos, P., Liu, H., Cross, J. R., Pfeffer, K., Coffer, P. J., Rudensky, A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504, 451–455.10.1038/nature12726386988424226773Search in Google Scholar

Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., Fukuda, S., Saito, T., Narushima, S., Hase, K. (2013). Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, 500 (7461), 232–236.10.1038/nature12331Search in Google Scholar

Bakircioglu, D., Topraksever, N., Yurtsever, S., Kizildere, M., Kurtulus, Y. B. (2018). Investigation of macro, micro and toxic element concentrations of milk and fermented milks products by using an inductively coupled plasma optical emission spectrometer, to improve food safety in Turkey. Microchem. J., 136, 133–138.10.1016/j.microc.2016.10.014Search in Google Scholar

Batt, C. A., Tortorello, M.-L. (2014). Encyclopedia of Food Microbiology. Second Edition, Academic Press, Oxford. 3248 pp.Search in Google Scholar

Bourrie, B. C., Willing, B. P., Cotter, P. D. (2016). The microbiota and health promoting characteristics of the fermented beverage kefir. Front Microbiol., 7, 647.10.3389/fmicb.2016.00647485494527199969Search in Google Scholar

Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F., Guy, C. D., Seed, P. C., Rawls, J. F., David, L. A., Hunault, G., Oberti, F., Calčs, P., Diehl, A. M. (2016). The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology, 63 (3), 764–775.10.1002/hep.28356497593526600078Search in Google Scholar

Byrne, C. D., Targher, G. (2015). NAFLD: A multisystem disease. J. Hepatol., 62 (1 Suppl), S47–64.10.1016/j.jhep.2014.12.01225920090Search in Google Scholar

Cais-sokolinska D., Wójtowski, J., Pikul J. (2016). Rheological, texture and sensory properties of kefir from mare’s milk and its mixtures with goat and sheep milk. Mljekarstvo, 66, 272–28110.15567/mljekarstvo.2016.0403Search in Google Scholar

Carasi, P., Racedo, S. M., Jacquot, C., Romanin, D. E., Serradell, M. A., Urdaci M. C. (2015). Impact of kefir derived Lactobacillus kefiri on the mucosal immune response and gut microbiota. J. Immunol. Res., 2015, 361604.10.1155/2015/361604Search in Google Scholar

David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563.10.1038/nature12820395742824336217Search in Google Scholar

de Oliveira Leite, A. M., Miguel, L., Peixoto, R. S., Rosado, A. S., Silva, J. T., Margaret, V., Paschoalin, F. (2013). Microbiological, technological and therapeutic properties of kefir: A natural probiotic beverage. Brazilian J. Microbiol,, 44, 341–349.10.1590/S1517-83822013000200001383312624294220Search in Google Scholar

Del Chierico, F., Vernocchi, P., Dallapiccola, B., Putignani, L. (2014). Mediterranean diet and health: Food effects on gut microbiota and disease control. Int. J. Mol. Sci., 15 (7), 11678–11699.10.3390/ijms150711678413980724987952Search in Google Scholar

Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A., 104, 13780–13785.10.1073/pnas.0706625104195945917699621Search in Google Scholar

Gevers, D., Kugathasan, S., Denson, L. A., Vázquez-Baeza, Y., Van Treuren, W., Ren, B., Schwager, E., Knights, D., Song, S. J., Yassour, M. et al. (2014). The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe, 15 (3), 382–392.10.1016/j.chom.2014.02.005405951224629344Search in Google Scholar

Hamet, M. F., Londero, A., Medrano, M., Vercammen, E., Van Hoorde, K., Garrote, G. L., Huys, G., Vandamme, P., Abraham, A. G. (2013). Application of culture-dependent and culture independent methods for the identification of Lactobacillus kefiranofaciens in microbial consortia present in kefir grains. Food Microbiol., 36, 327–334.10.1016/j.fm.2013.06.02224010614Search in Google Scholar

Hamet, M. F., Medrano, M., Pérez, P. F., Abraham, A. G. (2016). Oral administration of kefiran exerts a bifidogenic effect on BALB/c mice intestinal microbiota. Benef. Microbes, 7, 237–246.10.3920/BM2015.010326689227Search in Google Scholar

Hillman E. T., Lu H., Yao T., Nakatsu C. H. (2017). Microbial ecology along the gastrointestinal tract. Microbes Environ., 32 (4), 300–313.10.1264/jsme2.ME17017574501429129876Search in Google Scholar

Irigoyen, A., Arana, I., Castiella, M., Torre, P., Ib, F.C. (2005). Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chem., 90, 613–620.10.1016/j.foodchem.2004.04.021Search in Google Scholar

Jeong, D., Kim, D. H., Kang, I. B., Kim, H., Song, K. Y., Kim, H. S., Seo, K. H. (2017). Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food Funct., 8 (2), 680–686.10.1039/C6FO01559JSearch in Google Scholar

Jia, L., Vianna, C. R., Fukuda, M., Berglund, E. D., Liu, C., Tao, C., Sun, K., Liu, T., Harper, M. J., Lee, C. E., Lee, S., Scherer, P. E., Elmquist, J. K. (2014). Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat. Commun., 5, 3878.10.1038/ncomms4878408040824815961Search in Google Scholar

Karlsson, F. H., Tremaroli, V., Nookaew, I., Bergstrom, G., Behre, C. J., Fagerberg, B., Nielsen, J., Bäckhed, F. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature,498, 99–103.10.1038/nature1219823719380Search in Google Scholar

Kim, D. H., Jeong, D., Kim, H., Seo, K. H. (2019). Modern perspectives on the health benefits of kefir in next generation sequencing era: Improvement of the host gut microbiota. Crit. Rev. Food Sci. Nutr., 59 (11), 1782–1793.10.1080/10408398.2018.142816829336590Search in Google Scholar

Klimenko, N. S., Tyakht, A. V., Popenko, A. S., Vasiliev, A. S., Altukhov, I. A., Ischenko, D. S., Shashkova, T. I., Efimova, D. A., Nikogosov, D. A., Osipenko, D. A. et al. (2018). Microbiome responses to an uncontrolled short-term diet intervention in the frame of the citizen science project. Nutrients, 10 (5). pii: E576.10.3390/nu10050576Search in Google Scholar

Korsak, N., Taminiau, B., Leclercq, M., Nezer, C., Crevecoeur, S., Ferauche, C., Detry, E., Delcenserie, V., Daube, G. (2015). Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments. J. Dairy Sci.,98, 3684–3689.10.3168/jds.2014-906525828663Search in Google Scholar

Kowalska-Duplaga, K., Gosiewski, T., Kapusta, P., Sroka-Oleksiak, A., Wædrychowicz, A., Pieczarkowski, S., Ludwig-Słomczyńska, A. H., Wołkow, P. P., Fyderek, K. (2019). Differences in the intestinal micro-biome of healthy children and patients with newly diagnosed Crohn’s disease. Sci. Rep., 9, 18880.10.1038/s41598-019-55290-9Search in Google Scholar

Liu, J. R., Wang, S. Y., Chen, M. J., Yueh, P. Y., Lin, C. W. (2006). The anti-allergenic properties of milk kefir and soymilk kefir and their beneficial effects on the intestinal microflora. J. Sci. Food Agric., 86, 2527–2533.10.1002/jsfa.2649Search in Google Scholar

Lopez-Legarrea, P., Fuller, N. R., Zulet, M. A., Martinez, J. A., Caterson, I. D. (2014). The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. Asia Pac. J. Clin. Nutr., 23 (3), 360–368.Search in Google Scholar

Ma, Y. Y., Li, L., Yu, C. H., Shen, Z., Chen, L. H., Li, Y. M. (2013). Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J. Gastroenterol., 19 (40), 6911–6918.10.3748/wjg.v19.i40.6911381249324187469Search in Google Scholar

Maeda, H., Zhu, X., Omura, K., Suzuki, S., Kitamura, S. (2008). Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors, 22 (1–4), 197–200.10.1002/biof.5520220141Search in Google Scholar

Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., Cotter, P. D. (2013). Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS ONE, 8, e69371.10.1371/journal.pone.0069371371665023894461Search in Google Scholar

Marth, E. H., Steele, J. L. (2001). Applied Dairy Microbiology.2nd edn. Marcel Dekker, New York, 317 pp.10.1201/9781482294606Search in Google Scholar

Matijašić, B. B., Obermajer, T., Lipoglavšek, L., Grabnar, I., Avguštin, G., Rogelj, I. (2014). Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur. J. Nutr., 53 (4), 1051–1064.10.1007/s00394-013-0607-624173964Search in Google Scholar

Maukonen, J., Kolho, K. L., Paasela, M., Honkanen, J., Klemetti, P., Vaarala, O., Saarela, M. (2015). Altered fecal microbiota in paediatric inflammatory bowel disease. J. Crohn’s Colitis,9 (12), 1088–1095.10.1093/ecco-jcc/jjv14726351391Search in Google Scholar

Miele, L., Valenza, V., La Torre, G., Montalto, M., Cammarota, G., Ricci, R., Mascianà, R., Forgione, A., Gabrieli, M. L., Perotti, G., Vecchio, F. M., Rapaccini, G., Gasbarrini, G., Day, C. P., Grieco, A. (2009). Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology, 49 (6), 1877–1887.10.1002/hep.2284819291785Search in Google Scholar

Moschen, A. R., Kaser, S., Tilg, H. (2013). Non-alcoholic steatohepatitis: A microbiota-driven disease. Trends Endocrinol. Metab., 24 (11), 537–545.10.1016/j.tem.2013.05.00923827477Search in Google Scholar

Mujagic, Z., Vila, A. V., Falony, G., Vieira-Silva, S., Wang, J., Imhann, F., Brandsma, E., Nakamoto, N., Schnabl, B. (2016). Does the intestinal microbiota explain differences in the epidemiology of liver disease between East and West? Inflamm. Intest. Dis., 1 (1), 3–8.10.1159/000443196Search in Google Scholar

Nishida, A., Inoue, R., Inatomi, O., Bamba S., Naito, Y., Andoh, A. (2018). Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol., 11, 1–10.10.1007/s12328-017-0813-529285689Search in Google Scholar

Noverr, M. C., Huffnagle, G. B. (2004). Does the microbiota regulate immune responses outside the gut? Trends Microbiol., 12 (12), 562–568.10.1016/j.tim.2004.10.008Search in Google Scholar

Ozcan, T., Sahin, S., Akpinar-Bayizit, A., Yilmaz-Ersan, L. (2019). Assessment of antioxidant capacity by method comparison and amino acid characterization in buffalo milk kefir. Int. J. DairyTechnol., 72, 65–73.10.1111/1471-0307.12560Search in Google Scholar

Petersen, C., Round, J. L. (2014). Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol., 16 (7), 1024–1033.10.1111/cmi.12308414317524798552Search in Google Scholar

Poeta, M., Pierri, L., Vajro, P. (2017). Gut-liver axis derangement in non-alcoholic fatty liver disease. Children (Basel), 4 (8), pii: E66.10.3390/children4080066Search in Google Scholar

Quévrain, E., Maubert, M. A., Michon, C., Chain, F., Marquant, R., Tailhades, J., Miquel, S., Carlier, L., Bermśdez-Humarán, L. G., Pigneur, B., Lequin, O. et al. (2016). Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut, 65 (3), 415–425.10.1136/gutjnl-2014-307649513680026045134Search in Google Scholar

Rajoka, M. S. R., Shy, J., Mehwish, H. M., Zhy, J., Ly, Q., Shao, D., Huang, Q., Yang, H. (2017). Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Sci. Hum. Wellness, 6 (3), 121–130.10.1016/j.fshw.2017.07.003Search in Google Scholar

Rau, M., Rehman, A., Dittrich, M., Groen, A. K., Hermanns, H. M., Seyfried, F., Beyersdorf, N., Dandekar, T., Rosenstiel, P., Geier, A. (2018). Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United Eur. Gastroenterol. J., 6 (10), 1496–1507.10.1177/2050640618804444629793430574320Search in Google Scholar

Ritze, Y., Bárdos, G., Claus, A., Ehrmann, V., Bergheim, I., Schwiertz, A., Bischoff, S. C. (2014). Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS One,9 (1), e80169.10.1371/journal.pone.0080169390347024475018Search in Google Scholar

Rosa, D. D., Dias, M. M. S., Grześkowiak, Ł. M., Reis, S. A., Conceiçao, L. L., Peluzio, M. D. C. G. (2017). Milk kefir: Nutritional, microbiological and health benefits. Nutr. Res. Rev., 30 (1), 82–96.10.1017/S095442241600027528222814Search in Google Scholar

Sabaté, J. M., Jouėt, P., Harnois, F., Mechler, C., Msika, S., Grossin, M., Coffin, B. (2008). High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: A contributor to severe hepatic steatosis. Obes Surg., 18 (4), 371–377.10.1007/s11695-007-9398-218286348Search in Google Scholar

Sekirov, I., Russell, S. L., Antunes, L. C., Finlay, B. B. (2010). Gut micro-biota in health and disease. Physiol. Rev., 90, 859–904.10.1152/physrev.00045.200920664075Search in Google Scholar

Sharma, S., Tripathi, P. (2018). Gut microbiome and type 2 diabetes: Where we are and where to go? J. Nutr. Biochem., 63,101–108.10.1016/j.jnutbio.2018.10.00330366260Search in Google Scholar

Shen, W., Gaskins, H. R., McIntosh, M. K. (2014). Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J. Nutr. Biochem., 25 (3), 270–280.10.1016/j.jnutbio.2013.09.00924355793Search in Google Scholar

Shin, N. R., Whon, T. W., Bae, J. W. (2015). Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol., 33 (9), 496–503.10.1016/j.tibtech.2015.06.01126210164Search in Google Scholar

Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L. G., Gratadoux, J. J., Blugeon, S., Bridonneau, C., Furet, J. P., Corthier, G. et al. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U.S.A., 105 (43), 16731–16736.10.1073/pnas.0804812105257548818936492Search in Google Scholar

Sun, Y., Geng, W., Pan, Y., Wang, J., Xiao, P., Wang, Y. (2019). Supplementation with Lactobacillus kefiranofaciens ZW3 from Tibetan kefir improves depression-likebehavior in stressed mice by modulating the gut microbiota. Food Funct., 10 (2), 925–937.10.1039/C8FO02096E30698577Search in Google Scholar

Toscano, M., De Grandi, R., Miniello, V. L., Mattina, R., Drago, L. (2017). Ability of Lactobacillus kefiri LKF01 (DSM32079) to colonize the intestinal environment and modify the gut microbiota composition of healthy individuals. Dig. Liver Dis., 49 (3), 261–267.10.1016/j.dld.2016.11.01127939319Search in Google Scholar

Turan, I., Dedeli, O., Bor, S., Ilter, T. (2014). Effects of a kefir supplement on symptoms, colonic transit, and bowel satisfaction score in patients with chronic constipation: A pilot study. Turk. J. Gastroenterol., 25, 650–656.10.5152/tjg.2014.699025599776Search in Google Scholar

von Schillde, M. A., Hörmannsperger, G., Weiher, M., Alpert, C. A., Hahne, H., Bäuerl, C., van Huynegem, K., Steidler, L., Hrncir, T., Pérez-Martínez, G., Kuster, B., Haller, D. (2012). Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe,1 (4), 387–396.10.1016/j.chom.2012.02.006Search in Google Scholar

Wang, M. C., Zaydi, A. I., Lin, W. H., Lin, J. S., Liong, M. T., Wu, J. J. (2019). Putative probiotic strains isolated from kefir improve gastrointestinal health parameters in adults: A randomized, single-blind, placebo-controlled study. Probiotics Antimicrob. Proteins. doi: 10.1007/s12602-019-09615-9.10.1007/s12602-019-09615-931749128Search in Google Scholar

Wong, V. W., Tse, C. H., Lam, T. T., Wong, G. L., Chim, A. M., Chu, W. C., Yeung, D. K., Law, P. T., Kwan, H. S., Yu, J., Sung, J. J., Chan, H. L. (2013). Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis: A longitudinal study. PLoS One, 8 (4), e62885.10.1371/journal.pone.0062885363620823638162Search in Google Scholar

Xing, Z., Tang, W., Yang, Y., Geng, W., Rehman, R. U., Wang, Y. (2018). Colonization and gut flora modulation of Lactobacillus kefiranofaciens ZW3 in the intestinal tract of mice. Probiotics Antimicrob. Proteins, 10 (2), 374–382.10.1007/s12602-017-9288-428578494Search in Google Scholar

Yýlmaz, Ý., Dolar, M. E., Özpýnar, H. (2019). Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: A randomized controlled trial. Turk. J. Gastroenterol., 30 (3), 242–253.10.5152/tjg.2018.18227Search in Google Scholar

Zhernakova, A., Kurilshikov, A., Bonder, M. J., Tigchelaar, E. F., Schirmer, M., Vatanen, T., Mujagic, Z., Vila, A. V., Falony, G., Vieira-Silva, S. et al. (2016). Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 352, 565–569.10.1126/science.aad3369524084427126040Search in Google Scholar

eISSN:
2255-890X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics