Open Access

The Left Ventricular Pressure-Volume Area and Stroke Work in Porcine Model of Ascending Compared to Descending Thoracic Aorta Stenosis Creating a Chronic Early Vs. Late Left Ventricular Afterload Increase


Cite

1. Lam YY, Kaya MG, Li W, Gatzoulis MA, et al, Effect of Chronic Afterload Increase on Left Ventricular Myocardial Function in Patients With Congenital Left-Sided Obstructive Lesions Am J Cardiol 2007; 99: 1582–158710.1016/j.amjcard.2007.01.03117531585 Search in Google Scholar

2. Nozawa T, Yashumura Y, Futaka S, Tanaka N, Igarashi Y Goto Y, Suga H. Relation between oxygen consumption and pressure-volume area of in situ dog heart. Am J Physiol 1987; 253: H31-H40.10.1152/ajpheart.1987.253.1.H313605369 Search in Google Scholar

3. 3. Burkhoff D, Sugiura S, Yue D, Sagawa K. Contractility-dependent curvilinearity of end-systolic pressure-volume relations. The American Journal of Physiology, 1987; 252, H1218-27. doi:10.1152/ajpheart.1987.252.6.H12182438948 Open DOISearch in Google Scholar

4. Suga H, Hayashi T, Shirahata M. Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol. 1981 Jan; 240(1): H39-44. doi: 10.1152/ajpheart.1981.240.1.H39. PMID: 7457620.7457620 Open DOISearch in Google Scholar

5. Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. The American Journal of Physiology, 1986; 250(6): R1021– R1027.10.1152/ajpregu.1986.250.6.R10213717375 Search in Google Scholar

6. Burkhoff D, Yue DT, Oikawa RY, Franz MR, Schaefer J, Sagawa K. Influence of ventricular contractility on non-work-related myocardial oxygen consumption. Heart and Vessels, 1987; 3: 66–72.10.1007/BF020585213693257 Search in Google Scholar

7. Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circulation Research, 1983; 32(3): 306–318.10.1161/01.RES.53.3.306 Search in Google Scholar

8. Suga BH, Sagawa K. Instantaneous Pressure-Volume Relationships and Their Ratio in the Excised, Supported Canine Left Ventricle. Circulation Research, 1974; 35: 117–126.10.1161/01.RES.35.1.117 Search in Google Scholar

9. Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973; 32(3): 314–322. doi: 10.1161/01.res.32.3.314.4691336 Open DOISearch in Google Scholar

10. Yaku H, Slinker BK, Myhre ES, Watkins MW, Lewinter MM. Stability of myocardial O2 consumption-pressure-volume area relation in red cell-perfused rabbit heart. American Journal of Physiology-Heart and Circulatory Physiology, 1991; 261(5), H1630–H1635. Doi:10.1152/ajpheart.1991.261.5.H1630.1951749 Open DOISearch in Google Scholar

11. Suga H, Goto Y, Yasumura Y, Nozawa T, Futaki S, Tanaka N, Uenishi M. Oxygen-saving effect of negative work in dog left ventricle. American Journal of Physiology-Heart and Circulatory Physiology, 1988; 254(1), H34–H44. doi:10.1152/ajpheart.1988.254.1.H343337257 Open DOISearch in Google Scholar

12. Suga H, Hisano R, Hirata S, Hayashi T, Yamada O, Ninomiya I. Heart rate-independent energetics and systolic pressure-volume area in dog heart. Am J Physiol. 1983 Feb; 244(2): H206-14. Doi: 10.1152/ajpheart.1983.244.2.H206.6824091 Open DOISearch in Google Scholar

13. Nozawa T, Yasumura Y, Futaki S, Tanaka N, Uenishi M, Suga H. Efficiency of energy transfer from pressure-volume area to external mechanical work increases with contractile state and decreases with afterload in the left ventricle of the anesthetized closed-chest dog. Circulation, 1988;77(5), 1116–1124. doi:10.1161/01.cir.77.5.1116.3359589 Open DOISearch in Google Scholar

14. Peterzan MA, Lygate CA, Neubauer S, Rider O. Metabolic remodeling in hypertrophied and failing myocardium: a review. American Journal of Physiology. Heart and Circulatory Physiology, 2017; ajpheart.00731.2016. doi:10.1152/ajpheart.00731.201628646030 Open DOISearch in Google Scholar

15. Starling MR, Mancini GB, Montgomery DG, Gross MD. Relation between maximum time-varying elastance pressure-volume areas and myocardial oxygen consumption in dogs. Circulation 1991; Jan; 98(1): 304–14. doi: 10.1161/01.cir.83.1.304. PMID 19848881984888 Open DOISearch in Google Scholar

16. Izzi G, Zile MR, Gaasch WH. Myocardial Oxygen Consumption and the Left Ventricular Pressure-Volume Area in Normal and Hypertrophic Canine Hearts. Circulation 1991; 84: 1384–1392.10.1161/01.CIR.84.3.13841832096 Search in Google Scholar

17. Popevska S., et al. Adverse left ventricular hyper-trophy in descending thoracic vs. ascending aorta banding in novel porcine model. cMRI study. Presented abstract ESC 2019 poster presented in Paris France, published in European Heart Journal (2019), 40 Supplement(), 91110.1093/eurheartj/ehz748.0368 Search in Google Scholar

18. Popevska S et al. Different left ventricular remodeling between descending thoracic vs ascending aorta banding in porcine model. Abstract presentation ESCVS 2019 Groningen NL. published in Journal of Cardiovascular Surgery 2019; Vol 60, Suppl. 1 to No3.: 401,56.10.1093/eurheartj/ehz748.0368 Search in Google Scholar

19. Akinboboye OO, Chou RL, Bergmann SR. Myocardial blood flow and efficiency in concentric and eccentric left ventricular hypertrophy. American Journal of Hypertension, 2004; 17(5), 433–438. doi:10.1016/j.amjhyper.2004.02.00615110903 Open DOISearch in Google Scholar

20. Parbhudayal R, Harms H, Mchels M, Van Rossum AC, Germans T, Van der Velden J. Increased myocardial oxygen consumption precedes contractile dysfunction in hypertrophic cardiomyopathy caused by pathogenic TNNT2 gene variants. J Am Heart Assoc. 2020; 9:e015316. doi:10.1161/JAHA.119.015316742853132290750 Open DOISearch in Google Scholar

21. Laine H, Katoh C, Luotolahti M, Yki-Järvinen H, Kantola I, Jula A, et al. Myocardial oxygen consumption is unchanged but efficiency is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation. 1999; 100: 2425–2430. doi: 10.1161/01.cir.100.24.242510595955 Open DOISearch in Google Scholar

22. Abou Ezzeddine OF, Kemp BJ, Borlaug BA et al, Myocardial Energetics in Heart Failure. Circ Heart Fail. 2019; 12:e006240. DOI: 10.1161/CIRCHEARTFAILURE.119.006240686359931610726 Open DOISearch in Google Scholar

23. Hansson NH, Sörensen J, Harms HJ, Kim WY, Nielsen R, Tolbod LP, Frøkiær J, Bouchelouche K, Dodt KK, Sihm I, Poulsen SH, Wiggers H. Myocardial Oxygen Consumption and Efficiency in Aortic Valve Stenosis Patients With and Without Heart Failure. J Am Heart Assoc. 2017 Feb 6; 6(2): e004810. doi: 10.1161/JAHA.116.004810. PMID: 28167498; PMCID: PMC5523773.552377328167498 Open DOISearch in Google Scholar

24. Bombardini T, Costantino MF, Sicari R, Ciampi Q, Pratali L, Picano E. End-Systolic Elastance and Ventricular-Arterial Coupling Reserve Predict Cardiac Events in Patients with Negative Stress Echocardiography. BioMed Research International, 2013, 1–14. doi:10.1155/2013/235194376018224024185 Open DOISearch in Google Scholar

eISSN:
1857-8985
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Basic Medical Science, History and Ethics of Medicine, Clinical Medicine, other, Social Sciences, Education