Open Access

Re-Identifying Naval Vessels Using Novel Convolutional Dynamic Alignment Networks Algorithm


Cite

G. Zeng, R. Wang, W. Yu, A. Lin, H. Li, and Y. Shang, “A transfer learning-based approach to maritime warships re-identification,” Engineering Applications of Artificial Intelligence, vol. 125, p. 106 696, 2023, ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.engappai.2023.106696. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0952197623008801.Search in Google Scholar

M. Böhle, M. Fritz, and B. Schiele, “Convolutional dynamic alignment networks for inter- pretable classifications,” pp. 10 024–10 033, 2021. DOI: 10.1109/CVPR46437.2021.00990.Search in Google Scholar

D. Prasad, D. Rajan, L. Rachmawati, E. Rajabaly, and C. Quek, “Video processing from electro-optical sensors for object detection and tracking in a maritime environment: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. PP, Nov. 2016. DOI: 10.1109/TITS.2016.2634580.Search in Google Scholar

J. Cheng, R. Wang, A. Lin, D. Jiang, and Y. Wang, “A feature enhanced RetinaNet − based for instance-level ship recognition,” Engineering Applications of Artificial Intelligence, vol. 126, p. 107 133, Nov. 2023. DOI: 10.1016/j.engappai.2023.107133.Search in Google Scholar

Q. Yu, A. Teixeira, K. Liu, and C. Guedes Soares, “Framework and application of multicriteria ship collision risk assessment,” Ocean Engineering, vol. 250, p. 111 006, 2022, ISSN: 0029-8018. DOI: https://doi.org/10.1016/j.oceaneng.2022.111006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801822004309.Search in Google Scholar

F. Farahnakian, L. Zelioli, and J. Heikkonen, “Transfer learning for maritime vessel detection using deep neural networks,” pp. 1–6, 2021. DOI: 10.1109/ITSC48978.2021.9565077.Search in Google Scholar

D. K. Prasad, C. K. Prasath, D. Rajan, L. Rachmawati, E. Rajabaly, and C. Quek, “Challenges in video based object detection in maritime scenario using computer vision,” arXiv preprint arXiv:1608.01079, 2016.Search in Google Scholar

R. Zhang, S. Li, G. Ji, X. Zhao, J. Li, and M. Pan, “Survey on deep learning-based marine object detection,” Journal of Advanced Transportation, vol. 2021, pp. 1–18, Nov. 2021. DOI: 10.1155/2021/5808206.Search in Google Scholar

D. Qiao, G. Liu, T. Lv, W. Li, and J. Zhang, “Marine vision-based situational awareness using discriminative deep learning: A survey,” Journal of Marine Science and Engineering, vol. 9, no. 4, p. 397, 2021.Search in Google Scholar

J. Rodrigues, P. Cardoso, J. Monteiro, et al., Computational Science – ICCS 2019 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III: 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III. Jan. 2019, ISBN: 978-3-030-22743-2. DOI: 10.1007/978-3-030-22744-9.Search in Google Scholar

D. Qiao, G. Liu, F. Dong, S.-X. Jiang, and L. Dai, “Marine vessel re-identification: A large-scale dataset and global-and-local fusion-based discriminative feature learning,” IEEE Access, vol. 8, pp. 27 744–27 756, 2020.Search in Google Scholar

D. Qiao, G. Liu, J. Zhang, Q. Zhang, G. Wu, and F. Dong, “M 3c: Multimodel-and-multicue-based tracking by detection of surrounding vessels in maritime environment for USV,” Electronics, vol. 8, no. 7, p. 723, 2019.Search in Google Scholar

M. Er, Y. Zhang, J. Chen, and W. Gao, “Ship detection with deep learning: A survey,” Artificial Intelligence Review, vol. 56, pp. 1–41, Mar. 2023. DOI: 10.1007/s10462-023-10455-x.Search in Google Scholar

P. Spagnolo, F. Filieri, C. Distante, P. L. Mazzeo, and P. D’Ambrosio, “A new annotated dataset for boat detection and re-identification,” pp. 1–7, Sep. 2019. DOI: 10.1109/AVSS.2019.8909831.Search in Google Scholar

H. Luo, W. Jiang, X. Zhang, X. Fan, J. Qian, and C. Zhang, “AlignedReID + +: Dynamically matching local information for person re-identification,” Pattern Recognition, vol. 94, pp. 53–61, 2019, ISSN: 0031-3203. DOI: https://doi.org/10.1016/j.patcog.2019.05.028. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320319302031.Search in Google Scholar

H. Wang, H. Du, Y. Zhao, and J. Yan, “A comprehensive overview of person re-identification approaches,” IEEE Access, vol. PP, pp. 1–1, Mar. 2020. DOI: 10.1109/ACCESS.2020.2978344.Search in Google Scholar

B. Sun, Y. Ren, and X. Lu, “Semisupervised consistent projection metric learning for person reidentification,” IEEE Transactions on Cybernetics, vol. PP, pp. 1–10, Apr. 2020. DOI: 10.1109/TCYB.2020.2979262.Search in Google Scholar

N. Martinel, M. Dunnhofer, R. Pucci, G. Foresti, and C. Micheloni, “Lord of the rings: Hanoi pooling and self-knowledge distillation for fast and accurate vehicle re-identification,” IEEE Transactions on Industrial Informatics, vol. PP, pp. 1–1, Mar. 2021. DOI: 10.1109/TII.2021.3068927.Search in Google Scholar

X. Liu, S. Zhang, X. Wang, R. Hong, and Q. Tian, “Group-group loss-based global-regional feature learning for vehicle re-identification,” IEEE Transactions on Image Processing, vol. 29, pp. 2638–2652, 2019.Search in Google Scholar

B. Brabandere, X. Jia, T. Tuytelaars, and L. Van Gool, “Dynamic filter networks,” Neural Information Processing Systems (NIPS), Jan. 2016.Search in Google Scholar

S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “TransReID: Transformer-based object re-identification,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14 993–15 002, 2021. https://api.semanticscholar.org/CorpusID:231846818.Search in Google Scholar

T. Wang, H. Liu, W. Li, M. Ban, T. Guo, and Y. Li, Feature completion transformer for occluded person re-identification, Mar. 2023. DOI: 10.48550/arXiv.2303.01656.Search in Google Scholar

Y. Wu, W. Yang, and M. Wang, “Unsupervised person re-identification with attention-guided fine-grained features and symmetric contrast learning,” Sensors, vol. 22, no. 18, 2022, ISSN: 1424-8220. [Online]. Available: https://www.mdpi.com/1424-8220/22/18/6978.Search in Google Scholar

X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic filter networks,” inSearch in Google Scholar

Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,Search in Google Scholar

Guyon, and R. Garnett, Eds., vol. 29, Curran Associates, Inc., 2016. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2016/file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf.Search in Google Scholar

D. K. Jana, S. Roy, P. Dey, and B. Bej, “Utilization of a linguistic response surface methodology to the business strategy of polypropylene in an Indian petrochemical plant,” Cleaner Chemical Engineering, vol. 2, p. 100 010, 2022, ISSN: 2772-7823. DOI: https://doi.org/10.1016/j.clce.2022.100010.Search in Google Scholar

S. Roy, D.-P. Vuong, and D. K. Jana, “Priority-aware scheduling method based on linguistic interval type 2 fuzzy logic systems for dense industrial iot networks employing soft computing,” Results in Control and Optimization, vol. 14, p. 100 391, 2024, ISSN: 2666-7207. DOI:https://doi.org/10.1016/j.rico.2024.100391.Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences