Cite

1. Lloyd’s Register, QinetiQ and University of Strathclyde, ‘Global Marine Technology Trends 2030’, 2015. [Online]. Available: https://www.lr.org/en/insights/global-marine-trends-2030/global-marine-technology-trends-2030/. Search in Google Scholar

2. UNCTAD, ‘Review of Maritime Transport 2021: UNCTAD/RMT/2021’, 2021. [Online]. Available: https://unctad.org/system/files/official-document/rmt2021_en_0.pdf. Search in Google Scholar

3. W. Han, H. Jin, N. Zhang, and X. Zhang, ‘Cascade Utilisation of Chemical Energy of Natural Gas in an Improved CRGT Cycle,’ Energy, vol. 32, pp. 306–313, 2007. DOI: 10.1016/j.energy.2006.06.014. Open DOISearch in Google Scholar

4. N. Zhang and N. Lior, ‘Use of Low/Mid-Temperature Solar Heat for Thermochemical Upgrading of Energy, Part I: Application to a Novel Chemically-Recuperated Gas-Turbine Power Generation (SOLRGT) System,’ J. Eng. Gas Turbines Power, 134(7): 072301, 2012. DOI: 10.1115/1.4006083. Open DOISearch in Google Scholar

5. R. Carapellucci and L. Giordano, ‘Upgrading Existing Gas-Steam Combined Cycle Power Plants Through Steam Injection and Methane Steam Reforming,’ Energy, vol. 173, 229–243, 2019. DOI: 10.1016/j.energy.2019.02.046. Open DOISearch in Google Scholar

6. L. Tartakovsky and M. Sheintuch, ‘Fuel reforming in internal combustion engines,’ Progress in Energy and Combustion Science, vol. 67, pp. 88-114, 2018. DOI 10.1016/j.pecs.2018.02.003. Open DOISearch in Google Scholar

7. O. Cherednichenko and S. Serbin, ‘Analysis of efficiency of the ship propulsion system with thermochemical recuperation of waste heat’, J. Marine. Sci. Appl., vol. 17, pp. 122–130, 2018. DOI: 10.1007/s11804-018-0012-x. Open DOISearch in Google Scholar

8. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Investigation of the combustion processes in the gas turbine module of an FPSO operating on associated gas conversion products,’ Polish Maritime Research, vol. 4, pp. 149–156, 2019. DOI: 10.2478/pomr-2019-0077. Open DOISearch in Google Scholar

9. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Application of Thermo-chemical Technologies for Conversion of Associated Gas in Diesel-Gas Turbine Installations for Oil and Gas Floating Units,’ Polish Maritime, vol. 26(3), pp. 181-187, 2019. DOI: 10.2478/pomr-2019-0059. Open DOISearch in Google Scholar

10. H. Gaspar, A. Ross, D. Rhodes, and S. Erikstad, ‘Handling Complexity Aspects in Conceptual Ship Design,’ Int’l Maritime Design Conf., Glasgow, 2012. [Online]. Available: https://www.semanticscholar.org/paper/Handling-aspects-of-complexity-in-conceptual-ship-Gaspar/1febc36a217217fb7acff86d609d71983536816a#related-papers. Search in Google Scholar

11. J. Caballero, M. Navarro, R. Femenia, and I. Grossmann, ‘Integration of different models in the design of chemical processes: Application to the design of a power plant,’ Applied Energy, vol. 124, pp. 256–273, 2014. DOI: 10.1016/j.apenergy.2014.03.018. Open DOISearch in Google Scholar

12. J. Haydary, Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. Bratislava : John Wiley & Sons, 2018. 448 р. Search in Google Scholar

13. K.I.M. Al-Malah, Aspen Plus: Chemical Engineering Applications. Hoboken; New Jersey, John Wiley & Sons Inc, 2016. 656 p.10.1002/9781119293644 Search in Google Scholar

14. C.-J. Kat and P.S. Els, ‘Validation metric based on relative error,’ Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences, vol. 18 (5), pp. 487 – 520, 2012. DOI: https://www.tandfonline.com/doi/full/10.1080/13873954.2012.663392.10.1080/13873954.2012.663392 Search in Google Scholar

15. L. Brillouin, Science and Information Theory. 2nd edn. Dover Books on Physics, Courier Corporation, 2013. Available at: https://www.perlego.com/book/112582/science-and-information-theory-second-edition-pdf. Search in Google Scholar

16. B. Menin, ‘Information Measure Approach for Calculating Model Uncertainty of Physical Phenomena,’ American Journal of Computational and Applied Mathematics, vol. 7(1), pp. 11-24, 2017. DOI: 10.5923/j.ajcam.20170701.02. Open DOISearch in Google Scholar

17. I.B. Matveev, S.I. Serbin, ‘Theoretical and experimental investigations of the plasma-assisted combustion and reformation system,’ IEEE Transactions on Plasma Science, vol. 38(12 Part 1), pp. 3306–3312, 2010. DOI: 10.1109/TPS.2010.2063713. Open DOISearch in Google Scholar

18. S.I. Serbin, I.B. Matveev, and G.B. Mostipanenko, ‘Plasma-Assisted Reforming of Natural Gas for GTL: Part II - Modelling of the Methane-Oxygen Reformer,’ IEEE Transactions on Plasma Science, vol. 43(12), pp. 3964–3968, 2015. DOI: 10.1109/TPS.2015.2438174. Open DOISearch in Google Scholar

19. O. Cherednichenko, M. Tkach and S. Dotsenko, ‘Experimental Study of Processes in the Elements of Thermochemical Fuel Treatment Systems of Integrated Power Generating Units,’ 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES), pp. 1 - 4, 2021. DOI: 10.1109/MEES52427.2021.9598783. Open DOISearch in Google Scholar

20. V.M. Verbuck, and D.I. Milman, ‘Veckstein’s method as a modification of the transversal method,’ USSR Computational Mathematics and Mathematical Physics, vol. 17(2), pp. 215–216, 2017.10.1016/0041-5553(77)90052-0 Search in Google Scholar

21. F.J. Durán, F. Dorado, and I. Sanchez-Silva, ‘Exergetic and Economic Improvement for a Steam Methane-Reforming Industrial Plant: Simulation Tool,’ Energies vol. 13, pp. 3807, 2020. https://doi.org/10.3390/en13153807. Search in Google Scholar

22. S. Serbin, A. Mostipanenko, and I. Matveev, ‘Investigation of the Working Processes in a Gas Turbine Combustor with Steam Injection,’ Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, AJTEC2011-44042, T20012, pp.1-6, 2011. DOI: https://doi.org/10.1115/AJTEC2011-44042. Search in Google Scholar

23. S. Serbin and K. Burunsuz, ‘Numerical study of the parameters of a gas turbine combustion chamber with steam injection operating on distillate fuel,’ International Journal of Turbo and Jet Engines. Published online by De Gruyter, September 17, 2020. DOI: https://doi.org/10.1515/tjeng-2020-0029. Search in Google Scholar

24. H.K. Kayadelen and U. Yasin, ‘Thermoenvironomic evaluation of simple, intercooled, STIG, and ISTIG cycles,’ International Journal of Energy Research, vol. 42.12, pp. 3780-3802, 2018. DOI: https://doi.org/10.1002/er.4101. Search in Google Scholar

25. Wärtsilä Water & Waste, www.wartsila.com, 2019. [Online]. Available: https://www.wartsila.com/marine/build/fresh-water-generation/wartsila-reverse-osmosis. Search in Google Scholar

26. G.F. Romanovsky, N.V. Washchilenko, and S.I. Serbin, ‘Theoretical basis for the design of marine gas turbine units,’ Mikolayiv: USMTU, 304 p., 2003 (in Ukraine). Search in Google Scholar

27. F. Pan, H. Zheng, Q. Liu, and R. Yang, ‘Design and performance calculations of chemically recuperated gas turbine on ship,’ Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 227(8), pp. 908–918, 2013. DOI: 10.1177/0957650913498081. Open DOISearch in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences