Open Access

Future Sustainable Maritime Sector: Energy Efficiency Improvement and Environmental Impact Reduction for Fishing Carriers Older than 20 Years in the Fleet Part II


Cite

1. Europa.eu. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0240&rid=1. [Accessed: 28 Aug 2022]. Search in Google Scholar

2. “MarineTraffic: Global Ship Tracking Intelligence,” Marinetraffic.com. [Online]. Available: https://www.marinetraffic.com/en/ais/home/centerx:21.1/centery:28.1/zoom:2. [Accessed: 28 Aug 2022]. Search in Google Scholar

3. F. Tillig, W. Mao, and J. W. Ringsberg, “Systems modelling for energy-efficient shipping,” Transportportal. se. [Online]. Available: https://www.transportportal.se/Energieffektivitet/Systems%20modelling%20for%20energy-efficient%20shipping.pdf. [Accessed: 28 Aug 2022]. Search in Google Scholar

4. Rasanen, J.-E.; Schreiber, E.W. Using Variable Frequency Drives (VSD) to save energy and reduce emissions in newbuilds and existing ships, Energy efficient solutions, White Paper, ABB Marine and Cranes. Available online: https://library.e.abb.com/public/a2bd960ccd43d82ac1257b0200442327/VFD%20EnergyEfficiency_Rasanen_Schreiber_ABB_27%2004%202012.pdf [Accessed: 30 Sep 2022]. Search in Google Scholar

5. S. Dallas, “Power quality analysis for greener shipping by implementing an on-board electric power quality monitoring system,” J. Mar. Eng. Technol., vol. 21, no. 3, pp. 125–135, 2022, doi: 10.1080/20464177.2019.1658281 Open DOISearch in Google Scholar

6. M. Jaurola, A. Hedin, S. Tikkanen, and K. Huhtala, “Optimising design and power management in energy-efficient marine vessel power systems: a literature review,” J. Mar. Eng. Technol., vol. 18, no. 2, pp. 92–101, 2019, doi: 10.1080/20464177.2018.1505584 Open DOISearch in Google Scholar

7. I. Gospić, I. Glavan, I. Poljak, and V. Mrzljak, “Energy, economic and environmental effects of the marine diesel engine trigeneration energy systems,” J. Mar. Sci. Eng., vol. 9, no. 7, p. 773, 2021, https://doi.org/10.3390/jmse9070773 Search in Google Scholar

8. V. Palomba, G. E. Dino, R. Ghirlando, C. Micallef, and A. Frazzica, “Decarbonising the shipping sector: A critical analysis on the application of waste heat for refrigeration in fishing vessels,” Appl. Sci. (Basel), vol. 9, no. 23, p. 5143, 2019, doi:10.3390/app9235143 Open DOISearch in Google Scholar

9. S. Du, “Thermal analysis of a forced flow diffusion absorption refrigeration system for fishing-boat exhaust waste heat utilization”, Front. Energy Res., vol. 9, 2021, doi: 10.3389/fenrg.2021.761135 Open DOISearch in Google Scholar

10. Miro Petković, Marko Zubčić, Maja Krčum, Ivan Pavić “Wind assisted ship propulsion technologies – can they help in emissions reduction?,” Nase More, vol. 68, no. 2, pp. 102–109, 2021, doi:10.17818/NM/2021/2.6 Open DOISearch in Google Scholar

11. D. Karkosiński, W. A. Rosiński, P. Deinrych, and S. Potrykus, “Onboard energy storage and power management systems for all-electric cargo vessel concept,” Energies, vol. 14, no. 4, p. 1048, 2021, https://doi.org/10.3390/en14041048 Search in Google Scholar

12. O. Farhat, J. Faraj, F. Hachem, C. Castelain, and M. Khaled, “A recent review on waste heat recovery methodologies and applications: Comprehensive review, critical analysis and potential recommendations,” Cleaner Engineering and Technology, vol. 6, no. 100387, p. 100387, 2022, https://doi.org/10.1016/j.clet.2021.100387. Search in Google Scholar

13. J. Zhemin and Y. Yuxin, “Analysis of waste heat utilization of ship main engine,” E3S Web Conf., vol. 165, p. 06027, 2020, https://doi.org/10.1051/e3sconf/202016506027 Search in Google Scholar

14. Y. A. Chaboki, A. Khoshgard, G. Salehi, and F. Fazelpour, “Thermoeconomic analysis of a new waste heat recovery system for large marine diesel engine and comparison with two other configurations,” Energy Sources Recovery Util. Environ. Eff., pp. 1–26, 2020, doi: 10.1080/15567036.2020.1781298 Open DOISearch in Google Scholar

15. L. Mihanović, M. Jelić, G. Radica, and N. Račić, “Experimental investigation of marine engine exhaust emissions,” Energy Sources Recovery Util. Environ. Eff., pp. 1–14, 2021, doi: 10.1080/15567036.2021.2013344 Open DOISearch in Google Scholar

16. UN Environment, “About Montreal protocol,” Ozonaction, 29 Oct 2018. [Online]. Available: https://www.unep.org/ozonaction/who-we-are/about-montreal-protocol. [Accessed: 28 Aug 2022]. Search in Google Scholar

17. Unfccc.int, 1998. [Online]. Available: https://unfccc.int/resource/docs/cop3/07a01.pdf. [Accessed: 28 Aug 2022]. Search in Google Scholar

18. Europa.eu. [Online]. Available: https://ec.europa.eu/clima/system/files/2020-03/swd_2019_406_en.pdf. [Accessed: 28 Aug 2022]. Search in Google Scholar

19. “REFRIGERANT REPORT 21,” Bitzer-refrigerantreport.com. [Online]. Available: https://www.bitzerrefrigerantreport.com/fileadmin/Content/01_Startseite/A-501-21_EN.pdf. [Accessed: 28 Aug 2022]. Search in Google Scholar

20. J. Bodys, J. Smolka, and K. Banasiak, “Design and simulations of refrigerated sea water chillers with CO2 ejector pumps for marine applications in hot climates,” International Institute of Refrigeration (IIR), 2018, http://dx.doi.org/10.18462/iir.gl.2018.1244 Search in Google Scholar

21. А. N. Noskov, Thermal and structural calculation of a refrigeration screw compressor: Educational and methodological manual. ITMO University, 2015. Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences