Open Access

Experimental and Numerical Investigation on Specimen Geometry Effect on the CTOD Value For VL-E36 Shipbuilding Steel

   | Oct 22, 2021

Cite

1. K. Sun, Y. Hu, Y. Shi, and B. Liao, ‘Microstructure Evolution and Mechanical Properties of Underwater Dry Welded Metal of High Strength Steel Q690E Under Different Water Depths,’ Polish Marit. Res., vol. 27, no. 4, pp. 112–119, Dec. 2020, doi: 10.2478/pomr-2020-0071.10.2478/pomr-2020-0071 Search in Google Scholar

2. J. Kowalski, Ł. Licznerski, M. Supernak-Marczewska, and K. Emilianowicz, ‘Influence of Process of Straightening Ship Hull Structure Made of 316L Stainless Steel on Corrosion Resistance and Mechanical Properties,’ Polish Marit. Res., vol. 27, no. 4, pp. 103–111, Dec. 2020, doi: 10.2478/pomr-2020-0070.10.2478/pomr-2020-0070 Search in Google Scholar

3. X. Li, Z. Zhu, Y. Li, and Z. Hu, ‘Design and Mechanical Analysis of a Composite T-Type Connection Structure for Marine Structures,’ Polish Marit. Res., vol. 27, no. 2, pp. 145–157, Jun. 2020, doi: 10.2478/pomr-2020-0036.10.2478/pomr-2020-0036 Search in Google Scholar

4. K. Woloszyk, Y. Garbatov, J. Kowalski, and L. Samson, ‘Experimental and Numerical Investigations of Ultimate Strength of Imperfect Stiffened Plates of Different Slenderness,’ Polish Marit. Res., vol. 27, no. 4, pp. 120–129, Dec. 2020, doi: 10.2478/pomr-2020-0072.10.2478/pomr-2020-0072 Search in Google Scholar

5. Y. Zilin, W. Yu, Y. Xuefeng, G. Anping, Z. Rong, and J. Yanjie, ‘Investigations of Mechanical Properties of API P110 Steel Casing Tubes Operated in Deep-Sea Sour Condensate Well Conditions,’ Polish Marit. Res., vol. 27, no. 3, pp. 121–129, Sep. 2020, doi: 10.2478/pomr-2020-0053.10.2478/pomr-2020-0053 Search in Google Scholar

6. A. Neimitz, Mechanika Pękania. Warszawa: Wydawnictwo Naukowe PWN, 1998. Search in Google Scholar

7. F. C. Campbell, Fatigue and Fracture: Understanding the Basics. 2012.10.31399/asm.tb.ffub.9781627083034 Search in Google Scholar

8. W. Dahl and P. Langenberg, ‘Fracture Toughness of Metallic Materials,’ in Encyclopaedia of Materials: Science and Technology (Second Edition), 2001, pp. 3336–3340.10.1016/B0-08-043152-6/00596-9 Search in Google Scholar

9. Polski Rejestr Statków, Rules For Classification and Construction on sea-going ships, Part IX, Materials and Welding. Gdańsk: PRS, 2021. Search in Google Scholar

10. DNV, DNV OFFSHORE STANDARDS, DNV-OS-B101, Metallic materials. DNV AV, 2021. Search in Google Scholar

11. ISO, ISO 12135:2016 Metallic materials — Unified method of test for the determination of quasistatic fracture toughness. Geneva, 2016. Search in Google Scholar

12. ISO, Metallic materials - Method of test for the determination of quasistatic fracture toughness of welds (ISO 15653:2018). Geneva: ISO, 2018. Search in Google Scholar

13. Standards Norway, NORSOK STANDARD M-101, Structural steel fabrication, 5th ed. Lysaker, 2011. Search in Google Scholar

14. BSI, BS 7448-1:1991 - Fracture mechanics toughness tests. Method for determination of KIC, critical CTOD and critical J values of metallic materials. London: BSI, 1991. Search in Google Scholar

15. Det Norske Veritas (DNV), ‘DNV-OS-C401 Fabrication and Testing of Offshore Structures,’ no. October, 2014. Search in Google Scholar

16. The Engineering Equipment and Materials Users’ Association, Construction Specification for Fixed Offshore Structures in the North Sea, Publication No. 158 (19 9 4 Edition), Amendment No, 4, . EEMUA, 2005. Search in Google Scholar

17. T. Meshii, K. Lu, and R. Takamura, ‘A failure criterion to explain the test specimen thickness effect on fracture toughness in the transition temperature region,’ Eng. Fract. Mech., vol. 104, pp. 184–197, 2013, doi: 10.1016/j. engfracmech.2013.03.025. Search in Google Scholar

18. ASTM International, ‘ASTM E1820 - 18a Standard Test Method for Measurement of Fracture Toughness,’ 2018. Search in Google Scholar

19. T. Kawabata, T. Tagawa, T. Sakimoto, Y. Kayamori, M. Ohata, Y. Yamashita, E. Tamura, H. Yoshinari, S. Aihara, F. Minami, H. Mimura, Y. Hagihara ‘Proposal for a new CTOD calculation formula,’ Eng. Fract. Mech., vol. 159, pp. 16–34, 2016, doi: 10.1016/j.engfracmech.2016.03.019.10.1016/j.engfracmech.2016.03.019 Search in Google Scholar

20. T. Kawabata T. Tagawa, Y. Kayamori, M. Ohata, Y Yamashita, M Kinefuchi, H. Yoshinari, S. Aihara, F. Minami, H, Mimura, Y. Hagihara, ‘Applicability of new CTOD calculation formula to various a0/W conditions and B × B configuration,’ Eng. Fract. Mech., vol. 179, pp. 375–390, 2017, doi: 10.1016/j.engfracmech.2017.03.027.10.1016/j.engfracmech.2017.03.027 Search in Google Scholar

21. [21] A. Wells, ‘Application of fracture mechanics at and beyond general yield, Report No. M13/63,’ Br. Weld. J., pp. 563–590, 1963. Search in Google Scholar

22. J. Kowalski and J. Kozak, ‘The Effect of Notch Depth on CTOD Values in Fracture Tests of Structural Steel Elements,’ Polish Marit. Res., vol. 25, no. 2, pp. 85–91, 2018, doi: 10.2478/pomr-2018-0058.10.2478/pomr-2018-0058 Search in Google Scholar

23. ISO, ISO 6892-1:2016 Metallic materials — Tensile testing — Part 1: Method of test at room temperature. Geneva, 2016. Search in Google Scholar

24. H. Hollomon, ‘Tensile deformation.’ Aime Trans, vol. 12, no. (4), pp. 1–22, 1945. Search in Google Scholar

25. J. Kowalski and J. Kozak, ‘Numerical Model of Plastic Destruction of Thick Steel Structural Elements,’ Polish Marit. Res., vol. 25, no. 2, pp. 78–84, 2018, doi: 10.2478/ pomr-2018-0057.10.2478/pomr-2018-0057 Search in Google Scholar

26. Y. Bao and T. Wierzbicki, ‘A comparative study on various ductile crack formation criteria,’ J. Eng. Mater. Technol. Trans. ASME, vol. 126, no. 3, pp. 314–324, 2004, doi : 10.1115/1.1755244.10.1115/1.1755244 Search in Google Scholar

27. Dassault Systems, Abaqus 2019 Documentation. Providence: Dassault Systèmes, Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences