Open Access

Fluid–Structure Interaction Vibration Experiments and Numerical Verification of a Real Marine Propeller


Cite

1. J. Carlton, “Marine propellers and propulsion, 2nd ed.,” Butterworth-Heinemann, Oxford, 2012.10.1016/B978-0-08-097123-0.00010-1 Search in Google Scholar

2. P. Król, “Hydrodynamic State of Art Review: Rotor–Stator Marine Propulsor Systems Design,” Polish Marit. Res. 28 (1) (2021), 72–82. https://doi.org/10.2478/pomr-2021-000710.2478/pomr-2021-0007 Search in Google Scholar

3. L.C. Burrill, “Marine propeller blade vibrations: full scale tests,” Trans. NECIES, 1946, 62. Search in Google Scholar

4. L.C. Burrill and W. Robson, “Virtual mass and moment of inertia of propellers,” Trans. NECIES, 1962, 78. Search in Google Scholar

5. M.G. Parsons, W.S. Vorus, and E.M. Richard, “Added mass and damping of vibrating propellers,” Technical Report, University of Michigan, 1980. Search in Google Scholar

6. S. Hyloarides and W. Van Gent, “Hydrodynamic reactions to propeller vibrations,” in: Schip en Werf, 1979, 46. Search in Google Scholar

7. H. Shen, D. Zhao, and Z. Luo, “Solution to eigenvalues of fluid-solid coupling vibration problem,” J. Dalian Univ. Technol. 30 (3) (1990), 369–371. (In Chinese) Search in Google Scholar

8. Z. Zheng, D. Zhao, and G. Wang, “Fluid-structure coupling kinetic analysis of propellers,” J. Dalian Univ. Technol., 36 (1996), 199–223. (In Chinese) Search in Google Scholar

9. J. Xiong, D. Zhao, and J. Ma, “Dynamic analysis of propeller blades,” J. Dalian Univ. Technol. 40 (2000), 737–740. (In Chinese) Search in Google Scholar

10. A. Korotkin, “Added masses of ship structures (Vol. 88),” Springer Science & Business Media, 2008.10.1007/978-1-4020-9432-3 Search in Google Scholar

11. H. Ghassemi and E. Yari, “The added mass coefficient computation of sphere, ellipsoid and marine propellers using boundary element method,” Polish Marit. Res. 18 (2011), 17–26. https://doi.org/10.2478/v10012-011-0003-110.2478/v10012-011-0003-1 Search in Google Scholar

12. P. Castellini and C. Santolini, “Vibration measurements on blades of a naval propeller rotating in water with tracking laser vibrometer,” Measurement 24 (1998), 43–54. https://doi.org/10.1016/S0263-2241(98)00044-X10.1016/S0263-2241(98)00044-X Search in Google Scholar

13. [13] S.H. Abbas, J.K. Jang, D.H. Kim, and J.R. Lee, “Underwater vibration analysis method for rotating propeller blades using laser Doppler vibrometer,” Opt. Laser Eng. 132 (2020), 106133. https://doi.org/10.1016/j.optlaseng.2020.10613310.1016/j.optlaseng.2020.106133 Search in Google Scholar

14. L. Guangnian, Q. Chen, and Y. Liu, “Experimental study on dynamic structure of propeller tip vortex,” Polish Marit. Res. 27 (2) (2020), 11–18. https://doi.org/10.2478/pomr-2020-002210.2478/pomr-2020-0022 Search in Google Scholar

15. G. Vaz, D. Hally, T. Huuva, N. Bulten, P. Muller, P. Becchi, J.L. Herrer, S. Whitworth, R. Macé, and A. Korsström, “Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation,” in Proceedings of the Fourth International Symposium on Marine Propulsors (SMP) 15 (2015), 344–360. Search in Google Scholar

16. H. Nouroozi and H. Zeraatgar, “Propeller hydrodynamic characteristics in oblique flow by unsteady RANSE solver,” Polish Marit. Res. 27 (1) (2020), 6–17. https://doi.org/10.2478/pomr-2020-000110.2478/pomr-2020-0001 Search in Google Scholar

17. A. Nadery and H. Ghassemi, “Numerical investigation of the hydrodynamic performance of the propeller behind the ship with and without Wed,” Polish Marit. Res. 27 (4) (2020), 50–59. https://doi.org/10.2478/pomr-2020-006510.2478/pomr-2020-0065 Search in Google Scholar

18. Y. Zhang, X.P. Wu, M.Y. Lai, G.P. Zhou, and J. Zhang, “Feasibility study of RANS in predicting propeller cavitation in behind-hull conditions,” Polish Marit. Res. 27 (4) (2020), 26–35. https://doi.org/10.2478/pomr-2020-006310.2478/pomr-2020-0063 Search in Google Scholar

19. J.F. Sigrist, “Fluid‒structure interaction: an introduction to finite element coupling,” John Wiley & Sons, West Sussex, United Kingdom, 2015.10.1002/9781118927762 Search in Google Scholar

20. Z. Suo and R. Guo, “Hydroelasticity of rotating bodies— theory and application,” Marine Struct. 9 (1996), 631–646. https://doi.org/10.1016/0951-8339(95)00010-010.1016/0951-8339(95)00010-0 Search in Google Scholar

21. H. Lin and J. Lin, “Nonlinear hydroelastic behavior of propellers using a finite element method and lifting surface theory,” J. Mar. Sci. Technol. 1 (1996), 114. https://doi.org/10.1007/BF0239116710.1007/BF02391167 Search in Google Scholar

22. D. Zou, J. Zhang, N. Ta, Z. Rao, “The hydroelastic analysis of marine propellers with consideration of the effect of the shaft,” Ocean Eng. 131 (2017), 95–106. https://doi.org/10.1016/j.oceaneng.2016.12.03210.1016/j.oceaneng.2016.12.032 Search in Google Scholar

23. J. Li, Y. Qu, H. Hua, “Hydroelastic analysis of underwater rotating elastic marine propellers by using a coupled BEMFEM algorithm,” Ocean Eng. 146 (2017), 178–191. https://doi.org/10.1016/j.ocean eng.2017.09.028 Search in Google Scholar

24. Y. Young, “Time-dependent hydroelastic analysis of cavitating propulsors,” J. Fluid. Struct. 23 (2007), 269–295. http://dx.doi.org/10.1016/j.jfluidstructs.2006.09.003.10.1016/j.jfluidstructs.2006.09.003 Search in Google Scholar

25. Y. Young, “Fluid-structure interaction analysis of flexible composite marine propellers,” J. Fluid. Struct. 24 (2008), 799–818. http://dx.doi.org/10.1016/j.jfluidstructs.2007.12.010.10.1016/j.jfluidstructs.2007.12.010 Search in Google Scholar

26. X. He, Y. Hong, and R. Wang, “Hydroelastic optimisation of a composite marine propeller in a non-uniform wake,” Ocean Eng. 39 (2012), 14–23, http://dx.doi.org/10.1016/j.oceaneng.2011.10.007.10.1016/j.oceaneng.2011.10.007 Search in Google Scholar

27. H. Lee, M.C. Song, J.C. Suh, B.J. Chang, “Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm,” Int. J. Nav. Archit. Ocean Eng. 6 (2014), 562–577. http://dx.doi.org/10.2478/IJNAOE-2013-0198.10.2478/IJNAOE-2013-0198 Search in Google Scholar

28. J. Neugebauer, M. Abdel-Maksoud, and M. Braun, “Fluid-structure interaction of propellers,” in IUTAM Symposium on Fluid‒Structure Interaction in Ocean Engineering 2008, (pp. 191‒204). Springer, Dordrecht.10.1007/978-1-4020-8630-4_17 Search in Google Scholar

29. S. Kapuria and H. Das, “Improving hydrodynamic efficiency of composite marine propellers in off-design conditions using shape memory alloy composite actuators,” Ocean Eng. 168 (2018), 185–203. https://doi.org/10.1016/j.oceaneng.2018.09.00110.1016/j.oceaneng.2018.09.001 Search in Google Scholar

30. D.M. MacPherson, V.R. Puleo, and M.B. Packard, “Estimation of entrained water added mass properties for vibration analysis,” SNAME New England Section, 2007. Search in Google Scholar

31. J. Xing, “Natural vibration of two-dimensional slender structure–water interaction systems subject to Sommerfeld radiation condition,” J. Sound Vib. 308 (2007), 67–79. https://doi.org/10.1016/j.jsv.2007.07.00910.1016/j.jsv.2007.07.009 Search in Google Scholar

32. O.C. Zienkiewicz and R.L. Taylor, “The finite element method: solid mechanics,” Butterworth-Heinemann, Oxford, 2000. Search in Google Scholar

33. X.C. Wang, “Finite element method,” Tsinghua University Press, 2002. (In Chinese) Search in Google Scholar

34. E. Kock and L. Olson, “Fluid-structure interaction analysis by finite element method: a variational approach,” Int. J. Num. Mech. Eng. 31 (1991), 463–491. https://doi.org/10.1002/nme.162031030510.1002/nme.1620310305 Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences