Cite

1. Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Evol Methods Des Optim Control with Appl to Ind Probl 2001:95–100. https://doi.org/10.1.1.28.7571.Search in Google Scholar

2. Ben Said L, Bechikh S, Ghedira K. The r-Dominance: A new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans Evol Comput 2010;14:801–18. https://doi.org/10.1109/TEVC.2010.2041060.10.1109/TEVC.2010.2041060Search in Google Scholar

3. Jurdziński M. Podstawy Nawigacji Morskiej. Wydawncitwo Akademii Morskiej w Gdyni; 2003.Search in Google Scholar

4. Brooks RL, Jasper NH, James RW. Statistics on wave heights and periods for the North Atlantic Ocean. Trans Am Geophys Union 1958;39:1064. https://doi.org/10.1029/TR039i006p01064.10.1029/TR039i006p01064Search in Google Scholar

5. Wiśniewski B, Medyna P. Prognozowany zasięg pola sztormowego cyklonu tropikalnego jako domena rozmyta cyklonu. Zesz Nauk Akad Morskiej w Szczecinie 2004;nr 2:419–30.Search in Google Scholar

6. Lisowski J. The Sensitivity of State Differential Game Vessel Traffic Model. Polish Marit Res 2016;23:14–8. https://doi.org/10.1515/pomr-2016-0015.10.1515/pomr-2016-0015Search in Google Scholar

7. Spaans J. Windship Technology: Proceedings of the International Symposium on Windship Technology, Southampton, U.K., April 24-25, 1985., Elsevier Science; 1985, p. 385.10.1016/B978-0-444-42531-7.50015-4Search in Google Scholar

8. Motte R. On The Selection of Discrete Grid Systems for On-Board Microbased Weather Routeing. J Navig 1990;43:104–17.10.1017/S0373463300013849Search in Google Scholar

9. Wiśniewski B. Programowanie tras statków na oceanach. Zesz Nauk / Akad Morska w Szczecinie 2012;29:164–73.Search in Google Scholar

10. Singh Y, Sharma S, Sutton R, Hatton D. Optimal Path Planning of an Unmanned Surface Vehicle in a Real- Time Marine Environment using a Dijkstra Algorithm. Proc. 12th Int. Conf. Mar. Navig. Saf. Sea Transp., Gdynia: 2017, p. 399–402.10.1201/9781315099132-51Search in Google Scholar

11. Neumann T. Method of Path Selection in the Graph – Case Study. TransNav, Int J Mar Navig Saf Sea Transp 2014;8:557–62. https://doi.org/10.12716/1001.08.04.10.10.12716/1001.08.04.10Search in Google Scholar

12. Mannarini G, Coppini G, Oddo P, Pinardi N. A Prototype of Ship Routing Decision Support System for an Operational Oceanographic Service. TransNav, Int J Mar Navig Saf Sea Transp 2013;7:53–9. https://doi.org/10.12716/1001.07.01.06.10.12716/1001.07.01.06Search in Google Scholar

13. Zyczkowski M, Krata P, Szłapczyński R. Multi-objective weather routing of sailboats considering wave resistance. Polish Marit Res 2018;25. https://doi.org/10.2478/pomr-2018-0001.10.2478/pomr-2018-0001Search in Google Scholar

14. Zyczkowski M, Szłapczyński R. Multi-Objective Weather Routing of Sailing Vessels. Polish Marit Res 2017;24. https://doi.org/10.1515/pomr-2017-0130.10.1515/pomr-2017-0130Search in Google Scholar

15. Życzkowski M. Sailing Vessel Routing Considering Safety Zone and Penalty Time for Altering Course. TransNav, Int J Mar Navig Saf Sea Transp 2017;11:49–54. https://doi.org/10.12716/1001.11.02.04.10.12716/1001.11.02.04Search in Google Scholar

16. Naus K, Wąż M. The idea of using the A*algorithm for route planning an unmanned vehicle “Edredon.” Zesz Nauk / Akad Morska w Szczecinie 2013:143-147.Search in Google Scholar

17. Goldberg A V. Point-to-Point Shortest Path Algorithms with Preprocessing. LNCS 4362 - SOFSEM 2007 Theory Pract. Comput. Sci., 2007.10.1007/978-3-540-69507-3_6Search in Google Scholar

18. Mostefa M-S. ScienceDirect The branch-and-bound method, genetic algorithm, and dynamic programming to determine a safe ship trajectory in fuzzy environment. Procedia Comput Sci 2014;35:348–57. https://doi.org/10.1016/j.procs.2014.08.115.10.1016/j.procs.2014.08.115Search in Google Scholar

19. Walther L, Shetty S, Rizvanolli A, Jahn C. Comparing Two Optimization Approaches for Ship Weather Routing, Springer, Cham; 2018, p. 337–42. https://doi.org/10.1007/978-3-319-55702-1_45.10.1007/978-3-319-55702-1_45Search in Google Scholar

20. Vettor R, Szlapczynska J, Szlapczynski R, Tycholiz W, Soares CG. Towards improving optimised ship weather routing. Polish Marit Res 2020;27:60–9. https://doi.org/10.2478/pomr-2020-0007.10.2478/pomr-2020-0007Search in Google Scholar

21. Ni S, Liu Z, Cai Y, Wang X. Modelling of Ship’s Trajectory Planning in Collision Situations by Hybrid Genetic Algorithm. Polish Marit Res 2018;25:14–25. https://doi.org/https://doi.org/10.2478/pomr-2018-0092.10.2478/pomr-2018-0092Search in Google Scholar

22. Lazarowska A. Multi-criteria ACO-based Algorithm for Ship’s Trajectory Planning. TransNav, Int J Mar Navig Saf Sea Transp 2017;11:31–6. https://doi.org/10.12716/1001.11.01.02.10.12716/1001.11.01.02Search in Google Scholar

23. Lisowski J. Optimization Methods in Maritime Transport and Logistics. Polish Marit Res 2018;25:30–8. https://doi.org/10.2478/pomr-2018-0129.10.2478/pomr-2018-0129Search in Google Scholar

24. Tsou M-C, Cheng H-C. An Ant Colony Algorithm for efficient ship routing. Polish Marit Res 2013;20:28–38. https://doi.org/10.2478/pomr-2013-0032.10.2478/pomr-2013-0032Search in Google Scholar

25. Liu Y, Bucknall R. Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Eng 2015;97:126–44. https://doi.org/10.1016/j.oceaneng.2015.01.008.10.1016/j.oceaneng.2015.01.008Search in Google Scholar

26. Szlapczynski R, Krata P. Determining and visualizing safe motion parameters of a ship navigating in severe weather conditions. Ocean Eng 2018;158. https://doi.org/10.1016/j.oceaneng.2018.03.092.10.1016/j.oceaneng.2018.03.092Search in Google Scholar

27. Życzkowski M, Szłapczyńska J, Szłapczyński R. Review of Weather Forecast Services for Ship Routing Purposes. Polish Marit Res 2019;26:80–9. https://doi.org/http://doi.org/10.2478/pomr-2019-0069.10.2478/pomr-2019-0069Search in Google Scholar

28. Zhao J, Fan J. A Ship Network Dynamic Routing Algorithm Based on Vector Network. Polish Marit Res 2018;25:62–8. https://doi.org/https://doi.org/10.2478/pomr-2018-0075.10.2478/pomr-2018-0075Search in Google Scholar

29. Krata P, Szlapczynska J. Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction. Ocean Eng 2018;150:124–37. https://doi.org/10.1016/j.oceaneng.2017.12.049.10.1016/j.oceaneng.2017.12.049Search in Google Scholar

30. Pérez Arribas FL, López Piñeiro A. Seasickness prediction in passenger ships at the design stage. Ocean Eng 2007;34:2086–92. https://doi.org/10.1016/j.oceaneng.2007.02.009.10.1016/j.oceaneng.2007.02.009Search in Google Scholar

31. Wang HB, Li XG, Li PF, Veremey EI, Sotnikova M V. Application of Real-Coded Genetic Algorithm in Ship Weather Routing. J Navig 2018;71:989–1010. https://doi.org/10.1017/S0373463318000048.10.1017/S0373463318000048Search in Google Scholar

32. Bechikh S, Kessentini M, Said L Ben, Ghédira K. Preference Incorporation in Evolutionary Multiobjective Optimization: A Survey of the State-of-the-Art. Adv Comput 2015;98:141–207. https://doi.org/10.1016/bs.adcom.2015.03.001.10.1016/bs.adcom.2015.03.001Search in Google Scholar

33. Sindhya K, Miettinen K, Deb K. A hybrid framework for evolutionary multi-objective optimization. IEEE Trans Evol Comput 2013;17:495–511. https://doi.org/10.1109/TEVC.2012.2204403.10.1109/TEVC.2012.2204403Search in Google Scholar

34. Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans Evol Comput 2014;18:577–601. https://doi.org/10.1109/TEVC.2013.2281535.10.1109/TEVC.2013.2281535Search in Google Scholar

35. Ishibuchi H, Imada R, Setoguchi Y, Nojima Y. Reference Point Specification in Inverted Generational Distance for Triangular Linear Pareto Front. IEEE Trans Evol Comput 2018;22:961–75. https://doi.org/10.1109/TEVC.2017.2776226.10.1109/TEVC.2017.2776226Search in Google Scholar

36. Jaimes AL, Montaño AA, Coello CAC. Preference incorporation to solve many-objective airfoil design problems. 2011 IEEE Congr Evol Comput CEC 2011 2011:1605–12. https://doi.org/10.1109/CEC.2011.5949807.10.1109/CEC.2011.5949807Search in Google Scholar

37. Sielicka MW, Stateczny A. Clustering Bathymetric Data for Electronic Navigational Charts. J Navig 2016;69:1143–53. https://doi.org/10.1017/S0373463316000035..10.1017/S0373463316000035Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences