Open Access

Investigations of the Working Process in a Dual-Fuel Low-Emission Combustion Chamber for an FPSO Gas Turbine Engine


Cite

1. Offshore Technology (2018): Report: 55 FPSOs to start operations by 2022. Retrieved from https://www.offshore-technology.com/news/report-55-fpsos-start-operations-2022/.Search in Google Scholar

2. Offshore Magazine (2002): Leadon FPSO delivered on time, complete, within budget. Retrieved from https://www.offshore-mag.com/production/article/16759844/leadon-fpso-delivered-on-time-complete-within-budget.Search in Google Scholar

3. ENI (2016): Block 15-06 East Hub Development Project. Retrieved from https://www.eni.com/docs/en_IT/enicom/publications-archive/publications/brochures-booklets/countries/brochure_eni_angola_ese_web.pdf.Search in Google Scholar

4. Aker Floating Production (2009): FPSO Dhirubhai-1. Retrieved from http://www.akerfloatingproduction.com/s.cfm/3-12/FPSO-Dhirubhai-1-Operation.Search in Google Scholar

5. Cherednichenko O., Serbin S., Dzida M. (2019): Application of Thermo-Chemical Technologies for Conversion of Associated Gas in Diesel-Gas Turbine Installations for Oil and Gas Floating Units. Polish Maritime Research, 3(103), Vol. 26, 181–187.10.2478/pomr-2019-0059Search in Google Scholar

6. Cherednichenko O., Serbin S., Dzida M. (2019): Investigation of the Combustion Process in the Gas Turbine Module of an FPSO Operating on Associated Gas Conversion Products. Polish Maritime Research, 4(104), Vol. 26, 149–156.10.2478/pomr-2019-0077Search in Google Scholar

7. Domachowski Z., Dzida M. (2019): Applicability of Inlet Air Fogging to Marine Gas Turbine. Polish Maritime Research, 1(101), Vol. 26, 15–19.10.2478/pomr-2019-0002Search in Google Scholar

8. Burunsuz К.S., Kuklinovsky V.V., Serbin S.I. (2019): Investigations of the Emission Characteristics of a Gas Turbine Combustor with Water Steam Injection. Refrigeration Engineering and Technology, Vol. 55(2), 77–83.Search in Google Scholar

9. Lindman O., Andersson M., Persson M., Munktell E. (2014): Development of a Liquid Fuel Combustion System for SGT-750. In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection.10.1115/GT2014-25380Search in Google Scholar

10. Malte P.C., Pratt D.T. (1975): Measurement of Atomic Oxygen and Nitrogen Oxides in Jet-Stirred Combustion. In Symposium (International) on Combustion, Vol. 15(1), 1061–1070.10.1016/S0082-0784(75)80371-7Search in Google Scholar

11. Stöhr M., Boxx I., Carter C.D., Meier W. (2012): Experimental Study of Vortex–flame Interaction in a Gas Turbine Model Combustor. Combustion and Flame, Vol. 159, 2636–2649.10.1016/j.combustflame.2012.03.020Search in Google Scholar

12. Aleiferis P.G., Serras-Pereira J., Romunde Z., Caine J., Wirth M. (2010): Mechanisms of Spray Formation and Combustion from a Multi-Hole Injector with E85 and Gasoline. Combustion and Flame, Vol. 157(4), 735–756.10.1016/j.combustflame.2009.12.019Search in Google Scholar

13. Hertel M., Tartsch D., Sattelmayer S. (2019): Ignition of Diesel Pilot Fuel in Dual-Fuel Engines. Journal of Engineering for Gas Turbines and Power, doi: 141.10.1115/1.4043485.Search in Google Scholar

14. Ibrahim I.A., Shabaan M.M., Shehata M.A., Farag T.M. (2014): Investigation of Dual-Fuel Combustion Characteristics inside a Gas Turbine. Combustor International Conference on Machine Learning, Electrical and Mechanical Engineering (ICMLEME’2014). Dubai (UAE). Retrieved from: http://iieng.org/images/proceedings_pdf/2853E0114035.pdf.Search in Google Scholar

15. Kurji H. (2017): Fuel Flexibility with Low Emissions for Gas Turbine Engines, PhD thesis, Cardiff University.Search in Google Scholar

16. Matveev I., Serbin S., Mostipanenko A. (2007): Numerical Optimization of the “Tornado” Combustor Aerodynamic Parameters. Collection of Technical Papers – 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, AIAA 2007-391, Vol. 7, 4744–4755.10.2514/6.2007-391Search in Google Scholar

17. Matveev I.B., Serbin S.I., Vilkul V.V., Goncharova N.A. (2015): Synthesis Gas Afterburner Based on an Injector Type Plasma-Assisted Combustion System. IEEE Transactions on Plasma Science, Vol. 43(12), 3974–3978.10.1109/TPS.2015.2475125Search in Google Scholar

18. Serbin S.I. (1998): Modeling and Experimental Study of Operation Process in a Gas Turbine Combustor with a Plasma-Chemical Element. Combustion Science and Technology, Vol. 139, 137–158.10.1080/00102209808952084Search in Google Scholar

19. Matveev I., Matveeva S., Serbin S. (2007): Design and Preliminary Result of the Plasma Assisted Tornado Combustor. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Collection of Technical Papers, Cincinnati, OH, AIAA 2007-5628, Vol. 6, 6091–6098.10.2514/6.2007-5628Search in Google Scholar

20. Matveev I., Serbin S. (2006): Experimental and Numerical Definition of the Reverse Vortex Combustor Parameters. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2006-0551, 1–12.10.2514/6.2006-551Search in Google Scholar

21. Serbin, S.I., Matveev, I.B., Mostipanenko, G.B. (2011): Investigations of the Working Process in a “Lean-Burn” Gas Turbine Combustor with Plasma Assistance. IEEE Trans. Plasma Sci., Vol. 39(12), 3331–3335.10.1109/TPS.2011.2166811Search in Google Scholar

22. Launder B.E., Spalding D.B. (1972): Lectures in Mathematical Models of Turbulence. London: Academic Press, 327.Search in Google Scholar

23. Choudhury D. (1993): Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Inc. Technical Memorandum TM-107.Search in Google Scholar

24. Magnussen B.F. (1981): On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow. Nineteenth AIAA Meeting, St. Louis, 1–7.10.2514/6.1981-42Search in Google Scholar

25. Pope S.B. (1997): Computationally efficient implementation of combustion chemistry using in-situ adaptive tabulation. Combustion Theory and Modeling, Vol. 1, 41–63.10.1080/713665229Search in Google Scholar

26. Wang F., Huang Y., Deng T. (2009): Gas Turbine Combustor Simulation with Various Turbulent Combustion Models. Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air GT2009, 1–11.10.1115/GT2009-59198Search in Google Scholar

27. Benim A.C., Iqbal S., Meier W., Joos F., Wiedermann A. (2017): Numerical Investigation of Turbulent Swirling Flames with Validation in a Gas Turbine Model Combustor. Applied Thermal Engineering, Vol. 110(2), 202–212.10.1016/j.applthermaleng.2016.08.143Search in Google Scholar

28. Abou-Taouk A., Sigfrid I.R., Whiddon R., Eriksson L.E. (2012): A Four-Step Global Reaction Mechanism for CFD Simulations of Flexi-Fuel Burner for Gas Turbines. Proceedings of the 17th International Symposium on Turbulence, Heat and Mass Transfer Palermo, Italy, 1–12.10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.660Search in Google Scholar

29. Novosselov I.V., Malte P.C. (2007): Development and Application of an Eight-Step Global Mechanism for CFD and CRN Simulations of Lean-Premixed Combustors. Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea and Air, 1–11.10.1115/GT2007-27990Search in Google Scholar

30. Faeth G.M. (1979): Spray Combustion Models: A Review, AIAA Paper (293), 1–18.10.2514/6.1979-293Search in Google Scholar

31. James S., Anand M., Pope S. (2002): The Lagrangian PDF Transport Method for Simulations of Gas Turbine Combustor Flows. In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 4017.10.2514/6.2002-4017Search in Google Scholar

32. Romanovsky G.F., Serbin S.I., Patlaychuk V.M. (2005): Modern Gas Turbine Units of Russia and Ukraine. Vol. 1, Mikolayiv: NUK, 344 (in Ukrainian).Search in Google Scholar

33. Gatsenko N.A., Serbin S.I. (1995): Arc Plasmatrons for Burning Fuel in Industrial Installations. Glass and Ceramics, Vol. 51(11/12), 383–386.Search in Google Scholar

34. Serbin S.I., Matveev I.B., Goncharova N.A. (2014): Plasma Assisted Reforming of Natural Gas for GTL. Part I. IEEE Transactions on Plasma Science, Vol. 42(12), 3896–3900.10.1109/TPS.2014.2353042Search in Google Scholar

35. Directive 2010/75/EU of the European Parliament and of the Council of 24 November on Industrial Emissions (Integrated Pollution Prevention and Control) (2010): Official Journal of the European Union. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0075.Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences