1. bookVolume 25 (2018): Issue 3 (September 2018)
Journal Details
License
Format
Journal
eISSN
2083-7429
First Published
20 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Numerical Simulations of Sea Ice Conditions in the Baltic Sea for 2010–2016 Winters Using the 3D CEMBS Model

Published Online: 23 Oct 2018
Volume & Issue: Volume 25 (2018) - Issue 3 (September 2018)
Page range: 35 - 43
Journal Details
License
Format
Journal
eISSN
2083-7429
First Published
20 Jul 2007
Publication timeframe
4 times per year
Languages
English
Abstract

Sea ice conditions in the Baltic Sea during six latest winters – 2010/2011 to 2015/2016 are analysed using coupled ice–ocean numerical model 3D CEMBS (3D Coupled Ecosystem Model of the Baltic Sea). Simulation results are compared with observations from monitoring stations, ice charts and satellite data. High correlation between model results and observations has been confirmed both in terms of spatial and temporal approach. The analysed period has a high interannual variability of ice extent, the number of ice days and ice thickness. Increasing number of relatively mild winters in the Northern Europe directly associated with climate change results in reduced ice concentration in the Baltic Sea. In this perspective, the implementation and development of the sea ice modelling approach (in addition to standard monitoring techniques) is critical to assess current state of the Baltic Sea environment and predict possible climate related changes in the ecosystem and their influence for human marine–related activities, such as fishery or transportation.

Keywords

1. Koslowski, G., Loewe, P. (1994). The western Baltic Sea ice season in terms of mass–related severity index: 1879–1992. Tellus, 46A, 66–74.10.3402/tellusa.v46i1.15433Search in Google Scholar

2. Tinz, B. (1996). On the relation between annual maximum extent of ice cover in the Baltic Sea and sea level pressure as well as air temperature field. Geophysica, 32, 319–341.Search in Google Scholar

3. Pirazzini, R., Vihma, T., Granskog, M.A., Cheng, B. (2006). Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period. Annals of Glaciology, 44, 7–14.10.3189/172756406781811565Search in Google Scholar

4. BACC II Author Team. (2015). Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Berlin: Springer.10.1007/978-3-319-16006-1Search in Google Scholar

5. Granskog, M., Kaartokallio, H., Kuosa, H., Thomas, D.N., Vainio, J. (2006). Sea ice in the Baltic Sea – A rewiev. Estuarine, Coastal and Shelf Science, 70, 145–160.10.1016/j.ecss.2006.06.001Search in Google Scholar

6. Leppäranta, M., Myrberg, K. (2009). Physical Oceanography of the Baltic Sea. Berlin, Heideberg: Springer–Verlag.10.1007/978-3-540-79703-6Search in Google Scholar

7. BACC Author Team. (2008). Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Berlin: Springer.10.1007/978-3-540-72786-6Search in Google Scholar

8. Vihma, T., Haapala, J. (2009). Geophysics of sea ice in the Baltic Sea: A review. Progress in Oceanography, 80, 129–148.10.1016/j.pocean.2009.02.002Search in Google Scholar

9. Döscher, R., Willén, U., Jones, C., Rutgersson, A., Meier, H.E.M., Hansson, U., Graham, L.P. (2002). The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environment Research, 7, 183–192.Search in Google Scholar

10. Lehmann, A., Lorenz, P., Jacob, D. (2004). Modelling the exceptional Baltic Sea inflow events in 2002–2003. Geophysical Research Letters, 31(21).10.1029/2004GL020830Search in Google Scholar

11. Dieterich, C., Schimanke, S., Wang, S., Väli, G., Liu, Y., Hordoir, R., Axell, L., Höglund, A., Meier, H.E.M. (2013). Evaluation of the SMHI coupled atmosphere-ice-ocean model RCA4-NEMO. SMHI Report Oceanography, 47.Search in Google Scholar

12. Pham, T.V., Brauch, J., Dieterich, C., Frueh, B., Ahrens, B. (2014). New coupled atmosphere – ocean – ice system COSMO-CLM/NEMO: assessing air temperature sensitivity over the North and Baltic Seas. Oceanologia, 56(2), 167–189.10.5697/oc.56-2.167Search in Google Scholar

13. Pemberton, P., Löptien, U., Hordoir, R., Höglund, A., Schimanke, S., Axell, L., Haapala, J. (2017). Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO–LIM3.6-based ocean–sea-ice model setup for the North Sea and Baltic Sea. Geosci. Model Dev., 10, 3105–3123.10.5194/gmd-10-3105-2017Search in Google Scholar

14. Löptien, U., Axell, L. (2014). Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea. The Cryosphere, 8, 2409–2418.10.5194/tc-8-2409-2014Search in Google Scholar

15. Goerlandt, F., Montewka, J., Zhang, W., Kujala, P. (2016). An analysis of ship escort and convoy operations in ice conditions. Safety Sci., 95, 195–209.Search in Google Scholar

16. Haapala, J., Meier, H.E.M., Rinne, J. (2001). Numerical Investigations of Future Ice Conditions in the Baltic Sea. AMBIO, 30, 237–244.10.1579/0044-7447-30.4.237Search in Google Scholar

17. Meier, H.E.M. (2006). Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim. Dynam., 27, 39–68.10.1007/s00382-006-0124-xSearch in Google Scholar

18. Eilola, K., Mårtensson, S., Meier, H.E.M. (2013). Modeling the impact of reduced sea ice cover in future climate on the Baltic Sea biogeochemistry, Geophys. Res. Lett., 40, 149–154.10.1029/2012GL054375Search in Google Scholar

19. Meier, H.E.M., Döscher, R., Halkka, A. (2004). Simulated distributions of Baltic Sea-ice in warming climate and consequences for the winter habitat of the Baltic ringed seal. Ambio, 33, 249–256.10.1579/0044-7447-33.4.249Search in Google Scholar

20. Moore, J.K., Doney, S.C., Kleypas, J.A., Glover, D.M., Fung, I.Y. (2002). An intermediate complexity marine ecosystem model for the global domain. Deep Sea Research Part II, 49(1–3), 403–462.Search in Google Scholar

21. Smith, R., Gent, P. (2002). Reference manual for the Parallel Ocean Program (POP), Los Alamos unclassified report LA–UR–02–2484.Search in Google Scholar

22. Hunke, E.C., Dukowicz, J.K. (1997). An Elastic–Viscous–Plastic Model for Sea Ice Dynamics. Journal of Physical Oceanography, 27(9), 1849–1867.10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2Search in Google Scholar

23. Dzierzbicka–Głowacka, L., Jakacki, J., Janecki, M., and Nowicki, A. (2013a). Activation of the operational ecohydrodynamic model (3D CEMBS) – the hydrodynamic part. Oceanologia, 55(3), 519–541.10.5194/gmdd-5-1851-2012Search in Google Scholar

24. Dzierzbicka–Głowacka, L., Jakacki, J., Janecki, M., and Nowicki, A. (2013b). Activation of the operational ecohydrodynamic model (3D CEMBS) – the ecosystem module. Oceanologia, 55(3), 543–572.10.5194/gmdd-5-1851-2012Search in Google Scholar

25. Nowicki, A., Dzierzbicka–Głowacka, L., Janecki, M., Kałas, M. (2015). Assimilation of the satellite SST data in the 3D CEMBS model. Oceanologia, 57(1), 17–24.10.1016/j.oceano.2014.07.001Search in Google Scholar

26. Nowicki, A., Janecki, M., Dzierzbicka–Głowacka, L., Darecki, M., Piotrowski, P. (2016). The Use of Satellite Data in the Operational 3D Coupled Ecosystem Model of the Baltic Sea (3D CEMBS). Polish Maritime Research, 23(1), 20–24.10.1515/pomr-2016-0003Search in Google Scholar

27. Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska–Nowak, J., Dzierzbicka–Głowacka, L., Ficek, D., Furmańczyk, K., et al. (2011a). SatBałtyk – a Baltic environmental satellite remote sensing system – an ongoing project in Poland. Part 1: Assumptions, scope and operating range. Oceanologia, 53(4), 897–924.10.5697/oc.53-4.897Search in Google Scholar

28. Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska–Nowak, J., Dzierzbicka–Głowacka, L., Ficek, D., Furmańczyk, K., et al. (2011b). SatBałtyk – a Baltic environmental satellite remote sensing system – an ongoing project in Poland. Part 2: Practical applicability and preliminary results. Oceanologia, 53(4), 925–958.10.5697/oc.53-4.925Search in Google Scholar

29. Krężel, A., Bradtke, K., Herman, A. (2015). Use of Satellite Data in Monitoring of Hydrophysical Parameters of the Baltic Sea Environment. Polish Maritime Research, 22(3), 36–42.10.1515/pomr-2015-0054Search in Google Scholar

30. Karvonen, J., Simila, M. (2007). SAR–Based Estimation of the Baltic Sea Ice Motion. Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS, 2605–2608.10.1109/IGARSS.2007.4423378Search in Google Scholar

31. Donlon, C.J., Martin, M., Stark, J., Roberts–Jones, J., Fiedler, E., Wimmer, W. (2012). The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sensing of Environment, 116, 140–158.10.1016/j.rse.2010.10.017Search in Google Scholar

32. HELCOM. (1996). Third Periodic Assessment of the State of the Marine Environment of the Baltic Sea, 1989–1993. Background document. Baltic Sea Environment Proceedings, 64B.Search in Google Scholar

33. HELCOM. (2010). Maritime Activities in the Baltic Sea – An integrated thematic assessment on maritime activities and response to pollution at sea in the Baltic Sea Region. Baltic Sea Environment Proceedings, 123.Search in Google Scholar

34. Parkinson, C.L., Cavalieri, D.J., Gloersen, P., Zwally, H.J., Comiso, J.C. (1999). Arctic sea ice extents, areas, and trends, 1978–1996. Journal of Geophysical Research, 104(C9), 20837–20856.10.1029/1999JC900082Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo