1. bookVolume 20 (2020): Issue 1 (June 2020)
Journal Details
License
Format
Journal
eISSN
1339-4533
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
access type Open Access

Powder Metallurgy Manufacturing of Iron Aluminides with Different Aluminium Contents and Magnesium Addition by Reactive Hot Pressing

Published Online: 31 Jul 2021
Volume & Issue: Volume 20 (2020) - Issue 1 (June 2020)
Page range: 41 - 55
Journal Details
License
Format
Journal
eISSN
1339-4533
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
Abstract

In this work, iron aluminide materials, which are promising candidates for high temperature applications, are manufactured through reactive hot pressing of elemental powder mixes, facilitating a straightforward preparation of well-densified materials with a high degree of microstructural homogeneity. The impact of varying Al additions on reaction behavior, microstructural and compositional features of the resulting materials is evaluated. Furthermore, the effect of adding 1 wt. % Mg on reactivity and phase formation is illustrated. The results show that reactive hot pressing of elemental powders in the Fe-Al and Fe-Al-Mg systems at 1000 °C results in residual porosities well below 5 %. Magnesium addition significantly increased reactivity between constituents, leading to slightly improved densification without exhibiting potentially detrimental segregation phenomena. The processing approach presented in this work leads to material characteristics which are promising in the context of developing materials with favorable mechanical and tribological performance at elevated temperatures.

Keywords

[1] Deevi SC., Sikka VK.: Intermetallics, vol. 4, 1996, p. 357.10.1016/0966-9795(95)00056-9 Search in Google Scholar

[2] Zamanzade M., Barnoush A., Motz C.: Crystals, vol. 6, 2016, p. 10.10.3390/cryst6010010 Search in Google Scholar

[3] Stoloff NS.: Mater Sci Eng A, vol. 258, 1998, p. 1.10.1016/S0921-5093(98)00909-5 Search in Google Scholar

[4] Klöwer J.: Materials and Corrosion, vol. 47, 1996, p. 685.10.1002/maco.19960471205 Search in Google Scholar

[5] Hotař A., Kratochvíl P., Hotař V.: Kov Materiály-Met Mater, 2009, p. 247. Search in Google Scholar

[6] Chan CDN., Huvier C., Dinhut J.: Intermetallics, vol. 9, 2001, p. 817.10.1016/S0966-9795(01)00065-6 Search in Google Scholar

[7] Baker I., Munroe P.: Int Mater Rev, vol. 42, 1997, p. 181.10.1179/imr.1997.42.5.181 Search in Google Scholar

[8] Davis JR. ASM specialty handbook: heat-resistant materials. ASM International; 1997. Search in Google Scholar

[9] Li JC-M. Microstructure and Properties of Materials:(Volume 2). World Scientific Publishing Company; 2000.10.1142/4311 Search in Google Scholar

[10] Schneibel JH., Crimp MA.: Processing, Properties, and Applications of Iron Aluminides. TMS: Warrendale, 1994. Search in Google Scholar

[11] Milenkovic S., Palm M.: Intermetallics, vol.16, 2008, p. 1212.10.1016/j.intermet.2008.07.007 Search in Google Scholar

[12] Ramirez BN., Schön CG.: J. Phase Equilibria Diffus., vol. 38, 2017, p. 288.10.1007/s11669-017-0539-6 Search in Google Scholar

[13] Shahverdi H., Ghomashchi M., Shabestari S., Hejazi J.: J. Mater. Process. Technol., vol. 124, 2002, p. 345.10.1016/S0924-0136(02)00225-X Search in Google Scholar

[14] Chowdhuri S., Joshi S., Rao P., Ballal N.: J. Mater. Process. Technol., vol. 147: 2004, p. 131.10.1016/j.jmatprotec.2003.12.007 Search in Google Scholar

[15] Köhler J., Moral A., Denkena B.: Procedia CIRP, vol. 9, 2013, p. 2.10.1016/j.procir.2013.06.158 Search in Google Scholar

[16] Krasnowski M., Kulik T.: Intermetallics, vol. 15, 2007, p. 201.10.1016/j.intermet.2006.05.008 Search in Google Scholar

[17] Schneibel JH., Carmichael CA., Specht ED., Subramanian R.: Intermetallics, vol. 5, 1997, p. 61.10.1016/S0966-9795(96)00066-0 Search in Google Scholar

[18] Sina H., Corneliusson J., Turba K., Iyengar S.: J. Alloys Compd., vol. 636, 2015, p. 261.10.1016/j.jallcom.2015.02.132 Search in Google Scholar

[19] Rabin B., Wright R.: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 22, 1991, p. 277. Search in Google Scholar

[20] Savitskii A.: Liquid-Phase Sintering of the Systems With Interacting Components. Advanced Science and Technology of Sintering: Springer; 1999, p. 19.10.1007/978-1-4419-8666-5_2 Search in Google Scholar

[21] Jóźwiak S., Karczewski K., Bojar Z.: Intermetallics, vol. 18, 2010, p. 1332.10.1016/j.intermet.2010.02.021 Search in Google Scholar

[22] Gedevanishvili S., Deevi SC.: Mater. Sci. Eng. A, vol. 325, 2002, p. 163.10.1016/S0921-5093(01)01442-3 Search in Google Scholar

[23] Durejko T., Ziętala M., Bojar Z.: Materials, vol. 8, 2015, p. 575.10.3390/ma8020575 Search in Google Scholar

[24] Inoue M., Suganuma K., Niihara K.: Scripta materialia, vol.39, 1998, p. 1477.10.1016/S1359-6462(98)00351-0 Search in Google Scholar

[25] Inoue M., Suganuma K., Nichara K.: Intermetallics, vol. 8, 2000, p. 1035.10.1016/S0966-9795(00)00051-0 Search in Google Scholar

[26] Harun Z., Ismail NF., Badarulzaman NA.: Advanced Materials Research, Trans Tech Publ, 2012, p. 335.10.4028/www.scientific.net/AMR.488-489.335 Search in Google Scholar

[27] Dadkhah M., Saboori A., Jafari M.: J Mater, 2014, 496146.10.1155/2014/496146 Search in Google Scholar

[28] Heuer A.: J. Am. Ceram. Soc., vol.62, 1979, p.317.10.2307/340593 Search in Google Scholar

[29] Tortorelli PF., Natesan K.: Mater. Sci. Eng. A, vol. 258, 1998, p. 115.10.1016/S0921-5093(98)00924-1 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo