Cite

Lin T.W., Tony W., Cardenas L., Louis L.J., Soslowsky J. (2004). Biomechanics of tendon injury and repair. Journal of Biomechanics 37(6), 865-877. DOI: 10.1016/j.jbiomech.2003.11.005 Search in Google Scholar

Aparecida de Aro A., de Campos Vidal B., Pimentel E.R. (2012). Biochemical and anisotropical properties of tendons. Micron 43: 205–214. DOI: 10.1016/j.micron.2011.07.015 Search in Google Scholar

Nordin M., Frankel V.H. (2001). Basic biomechanics of the musculoskeletal system. Philadelphia: Lippincott Williams & Wilkins. Search in Google Scholar

Müller S.A., Todorov A., Heisterbach P.E., Martin I., Majewski M. (2015). Tendon healing: an overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering. Knee Surgery, Sports Traumatology, Arthroscopy 23(7), 2097-2105. DOI: 10.1007/s00167-013-2680-z Search in Google Scholar

Docheva D., Müller S.A., Majewski M., Evans C.H. (2015). Biologics for tendon repair. Advanced Drug Delivery Reviews 84, 222-239. DOI: 10.1016/j.addr.2014.11.015 Search in Google Scholar

Rashid M.S., Cooper C., Cook J., Cooper D., Dakin S.G., Snelling S. et al. (2017). Increasing age and tear size reduce rotator cuff repair healing rate at 1 year. Acta Orthopaedica 88(6), 606-611. DOI: 10.1080/17453674.2017.1370844 Search in Google Scholar

Liu C.F., Aschbacher-Smith L., Barthelery N.J., Dyment N., Butler D., Wylie C. (2011). What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. Tissue Engineering Part B 17(3), 165-76. DOI: 10.1089/ten.TEB.2010.0662 Search in Google Scholar

Hildebrand K.A., Woo S.L.Y., Smith D.W., Allen C.R., Deie M., Taylor B.J. et al. (2016). The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. The American Journal of Sports Medicine 26(4), 549-554. DOI: 10.1177/03635465980260041401 Search in Google Scholar

Chan B.P., Fu S., Qin L., Lee K., Rolf C.G., Chan K.(2000). Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthopaedica Scandinavica 71(5), 513-518. DOI: 10.1080/000164700317381234 Search in Google Scholar

Chang H., Brown C.W., Matzuk M.M. (2002). Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocrine Reviews 23, 787-823. DOI: 10.1210/er.2002-0003 Search in Google Scholar

Amento E.P., Beck L.S. (1991). TGF-beta and wound healing. Ciba Foundation Symposium 157, 115-129. DOI: 10.1002/9780470514061.ch8 Search in Google Scholar

Klein M.B., Yalamanchi N., Pham H., Longaker M.T., Chang J. (2002). Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production. Journal of Hand Surgery (American Volume) 27(4), 615-620. DOI: 10.1053/jhsu.2002.34004 Search in Google Scholar

Zhang Y.E. (2017). Non-smad signaling pathways of the TGF-beta family. Cold Spring Harbor Perspectives in Biology 9(2), a022129. DOI: 10.1101/cshperspect Search in Google Scholar

Derynck R., Zhang Y.E. (2003). Smad-dependent and smad-independent pathways in tgf-beta family signalling. Nature 425(6958), 577-584. DOI: 10.1038/nature02006 Search in Google Scholar

Zhou H., Jiang S., Li P., Shen H., Yang H., Xu S. et al. (2020). Improved tendon healing by a combination of tanshinone IIA and miR-29b inhibitor treatment through preventing tendon adhesion and enhancing tendon strength. International Journal of Medical Sciences 17(8), 1083-1094. DOI: 10.7150/ijms.44138 Search in Google Scholar

Chen S., Jiang S., Zheng W., Tu B., Liu S., Ruan H. et al. (2017). RelA/p65 Inhibition prevents tendon adhesion by modulating inflammation, cell proliferation, and apoptosis. Cell Death & Disease 8(3), e2710. DOI: 10.1038/cddis.2017.135. Search in Google Scholar

Li M., Jia J., Li S., Cui B., Huang J., Guo Z. et al. (2021). Exosomes derived from tendon stem cells promote cell proliferation and migration through the TGF β signal pathway. Biochemical and Biophysical Research Communications 536, 88-94. DOI: 10.1016/j.bbrc.2020.12.057 Search in Google Scholar

Minkwitz S., Schmock A., Kurtoglu A., Tsitsilonis S., Manegold S., Wildemann B. et al. (2017). Time-dependent alterations of MMPs, TIMPs and tendon structure in human achilles tendons after acute rupture. International Journal of Molecular Sciences 18(10), 2199. DOI: 10.3390/ijms1810 Search in Google Scholar

Chan K.M., Fu S.C., Wong Y.P., Hui W.C., Cheuk Y.C., Wong M.W. (2008). Expression of transforming growth factor β isoforms and their roles in tendon healing. Wound Repair and Regeneration 16(3), 399-407. DOI: 10.1111/j.1524-475X.2008.00379.x Search in Google Scholar

Sakai T., Yasuda K., Tohyama H., Azuma H., Nagumo A., Majima T. et al. (2002). Effects of combined administration of transforming growth factor-beta1 and epidermal growth factor on properties of the in situ frozen anterior cruciate Search in Google Scholar

Kawakubo A., Miyagi M., Yokozeki Y., Nakawaki M., Takano S., Satosh M. et al. (2022). Origin of M2 Mφ and its macrophage polarization by TGF-β in a mice intervertebral injury model. International Journal of Immunopathology and Pharmacology 36, 3946320221103792. DOI: 10.1177/03946320221103792 Search in Google Scholar

Hays P.L., Kawamura S., Deng X.H., Dagher E., Mithoefer K., Ying L. et al. (2008). The role of macrophages in early healing of a tendon graft in a bone tunnel. The Journal of Bone and Joint Surgery 90(3), 565-79. DOI: 10.2106/JBJS.F.00531 Search in Google Scholar

de la Durantaye M., Piette A.B., van Rooijen N., Frenette J. (2014). Macrophage depletion reduces cell proliferation and extracellular matrix accumulation but increases the ultimate tensile strength of injured Achilles tendons. Journal of Orthopaedic Research 32(2), 279-85. DOI: 10.1002/jor.22504 Search in Google Scholar

Wakefield L.M., Smith D.M., Flanders K.C., Sporn M.B. (1988). Latent transforming growth factor-beta from human platelets. A high molecular weight complex containing precursor sequences. Journal of Biological Chemistry 263(16), 7646–54. Search in Google Scholar

Werner S., Grose R. (2003). Regulation of wound healing by growth factors and cytokines. Physiological Reviews 83(3), 835-870. DOI: 10.1152/physrev.2003.83.3.835 Search in Google Scholar

Lyras D.N., Kazakos K., Tilkeridis K., Kokka A., Ververidis A., Botaitis S. et al. (2016). Temporal and spatial expression of TGF-b1 in the early phase of patellar tendon healing after application of platelet rich plasma. The Archives of Bone and Joint Surgery 4(2), 156-60. Search in Google Scholar

Yamazaki S., Yasuda K., Tomita F., Tohyama H., Minami A. (2005). The effect of transforming growth factor-beta1 on intraosseous healing of flexor tendon autograft replacement of anterior cruciate ligament in dogs. Arthroscopy 21(9), 1034-41. DOI: 10.1016/j.arthro.2005.05.011 Search in Google Scholar

Anaguchi Y., Yasuda K., Majima T., Tohyama H., Minami A., Hayasi K. (2005). The effect of transforming growth factor-beta on mechanical properties of the fibrous tissue regenerated in the patellar tendon after resecting the central portion. Clinical Biomechanics 20(9), 959-65. DOI: 10.1016/j.clinbiomech.2005.05.012 Search in Google Scholar

Jabłońska-Trypuć A., Matejczyk M., Rosochacki S. (2016). Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Journal of Enzyme Inhibition and Medicinal Chemistry 31, 177-83. DOI: 10.3109/14756366.2016.1161620 Search in Google Scholar

Kashiwagi K., Mochizuki Y., Yasunaga Y., Ishida O., Deie M., Ochi M. (2004). Effects of transforming growth factor-beta 1 on the early stages of healing of the Achilles tendon in a rat model. Scandinavian Journal of Plastic and Reconstructive Surgery 38(4), 193-197. DOI: 10.1080/02844310410029110 Search in Google Scholar

Spindler K.P., Imro A.K., Mayes C.E., Davidson J.M. (1996). Patellar tendon and anterior cruciate ligament have different mitogenic responses to platelet-derived growth factor and transforming growth factor beta. Journal of Orthopaedic Research 14(4), 542-546. DOI: 10.1002/jor.1100140407 Search in Google Scholar

Spindler K.P., Murray M.M., Detwiler K.B., Tarter J.T., Dawson J.M., Nanney L.B. et al. (2003). The biomechanical response to doses of TGF-beta 2 in the healing rabbit medial collateral ligament. Journal of Orthopaedic Research 21(2), 245-249. DOI: 10.1016/S0736-0266(02)00145-6 Search in Google Scholar

You T., Yuan S., Bai L., Zhang X., Chen P., Zhang W. (2020). Benzyl alcohol accelerates recovery from achilles tendon injury, potentially via TGF-β1/Smad2/3 pathway. Injury 51(7), 1515-1521. DOI: 10.1016/j.injury.2020.03.058 Search in Google Scholar

Ravitz M.J., Yan S., Dolce C., Kinniburgh A.J., Wenner C.E. (1996). Differential regulation of p27 and cyclin D1 by TGF-Beta and EGF in C3H 10T1/2 mouse fibroblasts. Journal of Cellular Physiology 168(3), 510-520. Search in Google Scholar

Loiselle A.E., Yukata K., Geary M.B., Kondabolu S., Shi S., Jonason J. H. et al. (2015). Development of Antisense Oligonucleotide (ASO) Technology against Tgf-β Signaling to Prevent Scarring During Flexor Tendon Repair. Journal of Orthopaedic Research 33(6), 859-866. DOI: 10.1002/jor.22890 Search in Google Scholar

Zhang Q., Liu C., Hong S., Min J., Yang Q., Hu M. et al. (2017). Excess mechanical stress and hydrogen peroxide remodel extracellular matrix of cultured human uterosacral ligament fibroblasts by disturbing the balance of MMPs/TIMPs via the regulation of TGF b1 signaling pathway. Molecular Medicine Reports 15(1), 423-30. DOI: 10.3892/mmr.2016.5994 Search in Google Scholar

Xie J., Wang C., Huang, D.Y., Zhang Y., Xu J., Kolesnikov S.S. et al. (2013). TGF-beta1 induces the different expressions of lysyl oxidases and matrix metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after mechanical injury. Journal of Biomechanics 46(5), 890-898. DOI: 10.1016/j.jbiomech.2012.12.019 Search in Google Scholar

Chen C.H., Lin Y.H., Chen C.H., Wang Y.H., Yeh M.L., Cheng T.L. et al. (2018). Transforming growth factor beta 1 mediates the low-frequency vertical vibration enhanced production of tenomodulin and type i collagen in rat achilles tendon. PloS One 13(10), e0205258. DOI: 10.1371/journal.pone.0205258 Search in Google Scholar

Jones E.R., Jones G.C., Legerlotz K., Riley G.P. (2013). Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ. Biochimica et Biophysica Acta 1833(12), 2596-2607. DOI: 10.1016/j.bbamcr.2013.06.019 Search in Google Scholar

Kallenbach J.G., Freeberg M.A.T., Abplanalp D. Alenchery R.G., Ajalik R.A., Muscat S. et al. (2022). Altered TGFB1 regulated pathways promote accelerated tendon healing in the superhealer MRL/MpJ mouse. Scientific Reports 12, 3026. DOI: 10.1038/s41598-022-07124-4 Search in Google Scholar

Mousavizadeh R., Waugh C.M., DeBruin E., McCormack R.G., DuronioV., Scott A. (2023). Exposure to oxLDL impairs TGF-β activity in human tendon cells. BMC Musculoskelet Disorders 24, 197. DOI: 10.1186/s12891-023-06308-x Search in Google Scholar

Pryce B.A., Watson S.S., Murchison N.D., Staverosky J.A., Dünker N., Schweitzer R. (2009). Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation. Development 136(8), 1351-1361. DOI: 10.1242/dev.027342 Search in Google Scholar

Bernasconi P., Carboni N., Ricci G., Siciliano G., Politano L., Maggi L. et al. (2018). Elevated TGF β2 serum levels in Emery-Dreifuss Muscular Dystrophy: Implications for myocyte and tenocyte differentiation and fibrogenic processes. Nucleus 9(1), 337-349. DOI: 10.1080/19491034.2018.1467722 Search in Google Scholar

Brown J.P., Galassi T.V., Stoppato M., Schiele N.R., Kuo C.K. (2015). Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors. Stem Cell Research & Therapy 6(1), 89 DOI: 10.1186/s13287-015-0043-z Search in Google Scholar

Liu Y., Feng L., Xu J., Yang Z., Wu T., Zhang J. et al. (2019). MiR-378a suppresses tenogenic differentiation and tendon repair by targeting at TGF-β2. Stem Cell Research & Therapy 10, 108 DOI: 10.1186/s13287-019-1216-y Search in Google Scholar

Koch D.W., Schnabel L.V., Ellis I.M. Bates R.E., Berglund A.K. (2022). TGF-β2 enhances expression of equine bone marrow-derived mesenchymal stem cell paracrine factors with known associations to tendon healing. Stem Cell Research & Therapy 13(1), 477. DOI: 10.1186/s13287-022-03172-9 Search in Google Scholar

Kovacevic D., Fox A.J., Bedi A., Ying L., Deng X.H., Warren R.F. et al. (2011). Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair. The American Journal of Sports Medicine 39(4), 811-819. DOI: 10.1177/0363546511399378 Search in Google Scholar

Reifenrath J., Wellmann M., Kempfert M., Angrisani N., Welke B., Gniesmer S. et al. (2020). TGF–β3 loaded electrospun polycaprolacton fibre scaffolds for rotator cuff tear repair: An in vivo study in rats. International Journal of Molecular Sciences 21(3), 1046. DOI: 10.3390/ijms21031046 Search in Google Scholar

Barsby T., Guest D. (2013). Transforming growth factor beta3 promotes tendon differentiation of equine embryo-derived stem cells. Tissue Engineering Part A 19, 2156-2165. DOI: 10.1089/ten.TEA.2012.0372 Search in Google Scholar

Havis E., Bonnin M.A., Esteves de Lima J., Charvet B., Milet C., Duprez D. (2016). TGFβ and FGF promote tendon progenitor fate and act downstream of muscle contraction to regulate tendon differentiation during chick limb development. Development 143(20), 3839-3851. DOI: 10.1242/dev.136242 Search in Google Scholar

Qiu Y., Wang X., Zhang Y., Carr A.J., Zhu L., Xia Z. et al. (2016). In vitro two-dimensional and three-dimensional tenocyte culture for tendon tissue engineering. Journal of Tissue Engineering and Regenerative Medicine 10(3), 216-226. DOI: 10.1002/term.1791 Search in Google Scholar

Pinheiro N.M., Cardoso F.A.G., Mendonça A.C., Zanier-Gomes P.H., Corrêa R.R.M., Carneiro A.C.D.M. et al. (2020). Effect of radiofrequency on patellar ligament repair of Wistar rats. Journal of Bodywork and Movement Therapies 24(4), 164-167. Search in Google Scholar

Ferguson M.W., O’Kane S. (2004). Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359(839), 839-850. DOI: 10.1098/rstb.2004.1475 Search in Google Scholar

Cetik R.M., Yabanoglu Ciftci S., Arica B., Baysal I., Akarca Dizakar S.O., Erbay Elibol F.K. et al. (2022). Evaluation of the effects of transforming growth factor-beta 3 (TGF-β3) loaded nanoparticles on healing in a rat achilles tendon injury model. The American Journal of Sports Medicine 50(4), 1066-1077. DOI: 10.1177/03635465211073148 Search in Google Scholar

Chen L., Yang T., Lu D.W., Zhao H., Feng Y.L., Chen H. et al. (2018). Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomedicine & Pharmacotherapy 101, 670-81. DOI: 10.1016/j.biopha.2018.02.090 Search in Google Scholar

Orfei C.P., Viganò M., Pearson J.R., Colombini A., De Luca P., Ragni E. et al. (2019). In vitro induction of tendon-specific markers in tendon cells, adipose- and bone marrow-derived stem cells is dependent on TGFβ3, BMP-12 and ascorbic acid stimulation. International Journal of Molecular Sciences 20(1), 149. DOI: 10.3390/ijms20010149 Search in Google Scholar

Deng L., Huang L., Guo Q., Shi X., Xu K. (2017). CREB1 and Smad3 mediate TGF-β3-induced Smad7 expression in rat hepatic stellate cells. Molecular Medicine Reports 16(6), 8455-62. DOI: 10.3892/mmr.2017.7654 Search in Google Scholar

Guan S., Wu Y., Zhang Q., Zhou J. (2020). TGF-β1 induces CREB1-mediated miR-1290 upregulation to antagonize lung fibrosis via Napsin A. International Journal of Molecular Medicine 46(1), 141-8. DOI: 10.3892/ijmm.2020.4565 Search in Google Scholar

Wu L.M., Wang Y.J., Li S.F., Wang J.K., Liu J. Fan C.C. et al. (2023). Up-regulation of CREB-1 regulates tendon adhesion in the injury tendon healing through the CREB-1/TGF-β3 signaling pathway. BMC Musculoskelet Disorders 24, 325 DOI: 10.1186/s12891-023-06425-7 Search in Google Scholar

Campbell B.H., Agarwal C., Wang J.HC. (2004). TGF-β1, TGF-β3, and PGE2 regulate contraction of human patellar tendon fibroblasts. Biomech Model Mechanobiol 2, 239-245. DOI: 10.1007/s10237-004-0041-z Search in Google Scholar

Manning C.N., Kim H.M., Sakiyama-Elbert S., Galatz L.M., Havlioglu N., Thomopoulos, S. (2011). Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model. Journal of Orthopaedic Research 29(7), 1099-1105. DOI: 10.1002/jor.21301 Search in Google Scholar

Kim H.M., Galatz L.M., Das R., Havlioglu N., Rothermich S.Y., Thomopoulos S. (2011). The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connective Tissue Research 52(2), 87-98. DOI: 10.3109/03008207.2010.483026 Search in Google Scholar

Jiang K., Li Y., Xiang C., Xiong Y., Jia J. (2021). TGF-β3 regulates adhesion formation through the JNK/c-Jun pathway during flexor tendon healing. BMC Musculoskelet Disorders 22, 843. DOI: 10.1186/s12891-021-04691-x Search in Google Scholar

Han B., Jones I.A., Yang Z., Fang W., Vangsness T. (2020). Repair of rotator cuff tendon defects in aged rats using a growth factor injectable gel scaffold. Arthroscopy: The Journal of Arthroscopic & Related Surgery 36(3), 629-637. DOI: 10.1016/j.arthro.2019.09.015 Search in Google Scholar

Li J., Liu Z.P., Xu C., Guo A. (2020). TGF-β1-containing exosomes derived from bone marrow mesenchymal stem cells promote proliferation, migration and fibrotic activity in rotator cuff tenocytes. Regenerative Therapy 15, 70-76. DOI: 10.1016/j.reth.2020.07.001 Search in Google Scholar

Yang G., Rothrauff B.B., Lin H., Yu S., Tuan R.S. (2017). Tendon-derived extracellular matrix enhances transforming growth factor-β3-induced tenogenic differentiation of human adipose-derived stem cells. Tissue Engineering Part A 23(3-4), 166-176. DOI: 10.1089/ten.TEA.2015.0498 Search in Google Scholar

Shojaee A., Parham A., Ejeian F., Hossein Nasr Esfahani M. (2019). Equine adipose mesenchymal stem cells (eq-ASCs) appear to have higher potential for migration and musculoskeletal differentiation. Research in Veterinary Science 125, 235-243. DOI: 10.1016/j.rvsc.2019.06.015 Search in Google Scholar

Cordeiro M.F., Bhattacharya S.S., Schultz G.S., Khaw P.T (2000). TGF-β1, -β2, and -β3 in vitro: Biphasic effects on tenon’s fibroblast contraction, proliferation, and migration. Investigative Ophthalmology & Visual Science 41(3), 756-763. Search in Google Scholar

Farhat Y.M., Al-Maliki A.A., Chen T., Juneja S.C., Schwarz E.M., O’Keefe R.J. et al. (2012). Gene expression analysis of the pleiotropic effects of TGF-β1 in an in vitro model of flexor tendon healing. PLoS one 7(12), e51411. DOI: 10.1371/journal.pone.0051411 Search in Google Scholar

Yang F., Richardson D.W. (2021). Comparative analysis of tenogenic gene expression in tenocyte-derived induced pluripotent stem cells and bone marrow-derived mesenchymal stem cells in response to biochemical and biomechanical stimuli. Stem Cells International, 8835576. DOI: 10.1155/2021/8835576 Search in Google Scholar

eISSN:
2082-8799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Public Health, Sports and Recreation, other