Cite

World Health Organization. The top 10 causes of death. WHO Newsroom Fact sheet Detail. Published January, 2019. Accessed November 2023. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Search in Google Scholar

Prisk GK. Microgravity and the respiratory system. European Respiratory Journal. 2014;43(5):1459-1471. https://doi.org/10.1183/09031936.00001414 Search in Google Scholar

Vidal Melo MF. Effect of cardiac output on pulmonary gas exchange: role of diffusion limitation with V̇a/Q̇ mismatch. Respiration Physiology. 1998;113(1):23-32. https://doi.org/10.1016/S0034-5687(98)00042-5 Search in Google Scholar

Lumb AB. Nunn’s Applied Respiratory Physiology. 8th Edition. Elsevier Health Sciences; 2016. Search in Google Scholar

Instytut Biochemii i Biofizyki PAN. VirRespir. Biocentrum Ochota. Published 2017. Accessed November, 2023. http://bco.ibb.waw.pl/en/bio-med-en/virrespir-en,79/ Search in Google Scholar

West JB, Dollery CT. Distribution of blood flow and ventilation-perfusion ratio in the lung, measured with radioactive CO2. Journal of Applied Physiology. 1960;15:405-410. https://doi.org/10.1152/jappl.1960.15.3.405 Search in Google Scholar

Glenny RW, Bernard S, Robertson HT, Hlastala MP. Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. Journal of Applied Physiology. 1999;86(2): 623-632. https://doi.org/10.1152/jappl.1999.86.2.623 Search in Google Scholar

Fresiello L, Zielinski K, Jacobs S, et al. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control. Artificial Organs. 2014;38(6):456-468. https://doi.org/10.1111/aor.12178 Search in Google Scholar

Gólczewski T, Darowski M. Virtual respiratory system for education and research: simulation of expiratory flow limitation for spirometry. The International Journal of Artificial Organs. 2006;29(10):961-972. https://doi.org/10.1177/039139880602901007 Search in Google Scholar

Darowski M, Gólczewski T, Michnikowski M. Choice of proper lung ventilation method. Biocybernetics and Biomedical Engineering. 2006;26(1):21-37. Search in Google Scholar

Gólczewski T, Darowski M. Virtual respiratory system in investigation of CPAP influence on optimal breathing frequency in obstructive lungs disease. Nonlinear Biomedical Physic. 2007;1(6). https://doi.org/10.1186%2F1753-4631-1-6 Search in Google Scholar

Gólczewski T. Gas exchange in virtual respiratory system - simulation of ventilation without lungs movement. The International Journal of Artificial Organs. 2007;30(12):1047-1056. https://doi.org/10.1177/039139880703001204 Search in Google Scholar

Gólczewski T, Darowski M. The virtual cardio-respiratory system - a sub-model of gas exchange and transfer. Biocybernetics and Biomedical Engineering. 2008;28(1):29-40. https://ibib.waw.pl/images/ibib/grupy/Wydawnictwa-Tomy/dokumenty/2008/BBE_28_1_029_FT.pdf Search in Google Scholar

Gólczewski T, Zieliński K, Ferrari G, Pałko KJ, Darowski M. Influence of ventilation mode on blood oxygenation - investigation with Polish Virtual Lungs and Italian Model of Circulation. Biocybernetics and Biomedical Engineering. 2010;30(1):17-30. https://www.ibib.waw.pl/images/ibib/grupy/Wydawnictwa-Tomy/dokumenty/2010/BBE_30_1_017_FT.pdf Search in Google Scholar

Gólczewski T, Zieliński K, Pałko KJ, Darowski M. A model of pulmonary circulation for cardiopulmonary interaction analysis. The International Journal of Artificial Organs. 2010;33(7):450-450. Search in Google Scholar

Gólczewski T, Pałko KJ. A method for quantification of lung resistive and compliant properties for spirometry interpretation support - tests on a virtual patient. Biocybernetics and Biomedical Engineering. 2013;33(3):136-144. https://doi.org/10.1016/j.bbe.2013.07.002 Search in Google Scholar

Pałko KJ, Kołodziej D, Gólczewski T, Zieliński K, Darowski M. A lungs partition for simulations of cardiopulmonary interactions in a virtual patient. The International Journal of Artificial Organs. 2010;33(7):451-451. Search in Google Scholar

Tawhai MH, Lin CL. Image-based modeling of lung structure and function. Journal of Magnetic Resonance Imaging. 2010;32(6):1421-1431. https://doi.org/10.1002/jmri.22382 Search in Google Scholar

Spencer RM, Schroeter JD, Martonen TB. Computer simulations of lung airway structures using data-driven surface modeling techniques. Computers in Biology and Medicine. 2001;31(6):499–511. https://doi.org/10.1016/S0010-4825(01)00020-8 Search in Google Scholar

Burton RT, Isaacs KK, Fleming JS, Martonen TB. Computer Reconstruction of a Human Lung Boundary Model From Magnetic Resonance Images. Respiratory Care. 2004;49(2):180-185. https://rc.rcjournal.com/content/respcare/49/2/180.full.pdf Search in Google Scholar

Varner VD, Nelson CM. Computational models of airway branching morphogenesis. Seminars in Cell & Developmental Biology. 2017;67:170–176. https://doi.org/10.1016/j.semcdb.2016.06.003 Search in Google Scholar

Putz R, Pabst R. Sobotta Atlas of human anatomy - volumes 1 and 2 [Original title: Atlas anatomii człowieka – tom 1 i 2], Urban & Partner 2006, ISBN 9788389581099 [In Polish] Search in Google Scholar

Rosati Rowe JA, Burton R, McGregor G, McCauley R, Tang W, Spencer R. Development of a three-dimensional model of the human respiratory system for dosimetric use. Theoretical Biology and Medical Modelling. 2013;10(28). https://doi.org/10.1186/1742-4682-10-28 Search in Google Scholar

Li C, Cai Y, Wang W, et al. Combined application of virtual surgery and 3D printing technology in postoperative reconstruction of head and neck cancers. BMC Surgery. 2019;19:182. https://doi.org/10.1186/s12893-019-0616-3 Search in Google Scholar

Bergquist JR, Morris JM, Matsumoto JM, Schiller HJ, Kim BD. 3D printed modeling contributes to reconstruction of complex chest wall instability. Trauma Case Reports. 2019;22:100218. https://doi.org/10.1016/j.tcr.2019.100218 Search in Google Scholar

Chen Y, Zhang J, Chen Q, et al. Three-dimensional printing technology for localised thoracoscopic segmental resection for lung cancer: a quasi-randomised clinical trial. World Journal of Surgical Oncology. 2020;18:223. https://doi.org/10.1186/s12957-020-01998-2 Search in Google Scholar

Buess A, Van Muylem A, Nonclercq A, Haut B. Modeling of the Transport and Exchange of a Gas Species in Lungs With an Asymmetric Branching Pattern. Application to Nitric Oxide. Frontiers in Physiology. 2020;11:570015. https://doi.org/10.3389/fphys.2020.570015 Search in Google Scholar

Mei K, Geagan M, Roshkovan L, et. al. Three-dimensional printing of patient-specific lung phantoms for CT imaging: Emulating lung tissue with accurate attenuation profiles and textures. Medical Physics. 2022;49(2):825-835. https://doi.org/10.1002/mp.15407 Search in Google Scholar

Maghsoudi-Ganjeh M, Mariano CA, Sattari S, Arora H, Eskandari M. Developing a Lung Model in the Age of COVID-19: A Digital Image Correlation and Inverse Finite Element Analysis Framework. Frontiers in Bioengineering and Biotechnology. 2021;9:684778. https://doi.org/10.3389/fbioe.2021.684778 Search in Google Scholar

Liu G, Bian W, Zu G, et al. Development of a 3D Printed Lung Model Made of Synthetic Materials for Simulation. The Thoracic and Cardiovascular Surgeon. 2022;70(4):355-360. https://doi.org/10.1055/s-0041-1731783 Search in Google Scholar

Higgins M, Leung S, Radacsi N. 3D printing surgical phantoms and their role in the visualization of medical procedures. Annals of 3D Printed Medicine. 2022;6:100057. https://doi.org/10.1016/j.stlm.2022.100057 Search in Google Scholar

Yilmaz B, Yilmaz Kara B. Mathematical surface function-based design and 3D printing of airway stents. 3D Printing in Medicine. 2022;8(1):24. https://doi.org/10.1186/s41205-022-00154-8 Search in Google Scholar

National Cancer Institute. Lung Cancer Modeling. Cancer Intervention and Surveillance Modeling Network. Published 2014. Accessed November, 2023. https://cisnet.cancer.gov/lung Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics