Open Access

Effective atomic number and photon buildup factor of bismuth doped tissue for photon and particles beam interaction


Cite

1. Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theoretical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat. 2007;6(5):395-401. https://doi.org/10.1177/15330346070060050410.1177/15330346070060050417877427 Search in Google Scholar

2. Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2(4):330-42. Search in Google Scholar

3. Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based Nano Enhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics. 2018;8(7):1824-1849. https://doi.org/10.7150/thno.2217210.7150/thno.22172585850329556359 Search in Google Scholar

4. Kuncic Z, Lacombe S. Nanoparticle radio enhancement: principles, progress, and application to cancer treatment. Phys Med Biol. 2018;63(2):02TR01. https://doi.org/10.1088/1361-6560/aa99ce10.1088/1361-6560/aa99ce29125831 Search in Google Scholar

5. Mehrnia SS, Hashemi B, Mowla SJ, Arbabi A. Enhancing the effect of 4MeV electron beam using gold nanoparticles in breast cancer cells. Phys Med. 2017;35:18-24. https://doi.org/10.1016/j.ejmp.2017.02.01410.1016/j.ejmp.2017.02.01428285936 Search in Google Scholar

6. Peukert D, Kempson I, Douglass M, Bezak E. Metallic nanoparticle radio sensitization of ion radiotherapy: A review. Phys Med. 2018;47:121-128. https://doi.org/10.1016/j.ejmp.2018.03.00410.1016/j.ejmp.2018.03.00429609813 Search in Google Scholar

7. Stewart C, Konstantinov K, McKinnon S, Guatelli S, Lerch M, Rosenfeld A, Tehei M, Corde S. First proof of bismuth oxide nanoparticles as efficient radiosensitizers on highly radioresistant cancer cells. Phys Med. 2016;32(11):1444-1452. https://doi.org/10.1016/j.ejmp.2016.10.01510.1016/j.ejmp.2016.10.01528327297 Search in Google Scholar

8. Ghorbani M, Salahshour F, Haghparast A, Moghaddas TA, Knaup C. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources. J Contemp Brachytherapy. 2014;6(1):54-67. https://doi.org/10.5114/jcb.2014.4202410.5114/jcb.2014.42024400343124790623 Search in Google Scholar

9. Manohara SR, Hanagodimath SM, Gerward L. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics. J Appl Clin Med Phys. 2011;12(4):3557. https://doi.org/10.1120/jacmp.v12i4.355710.1120/jacmp.v12i4.3557571874722089011 Search in Google Scholar

10. Kurudirek M. Effective atomic number of soft tissue, water and air for interaction of various hadrons, leptons and isotopes of hydrogen. Int J Radiat Biol. 2017;93(12):1299-1305. https://doi.org/10.1080/09553002.2018.138854610.1080/09553002.2018.138854628978247 Search in Google Scholar

11. Kurudirek M, Özdemir Y. Energy absorption and exposure buildup factors for some polymers and tissue substitute materials: photon energy, penetration depth and chemical composition dependence. J Radiol Prot. 2011;31(1):117-28. https://doi.org/10.1088/0952-4746/31/1/00810.1088/0952-4746/31/1/00821346285 Search in Google Scholar

12. Sayyed MI, Elhouichet H. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses. Radiat. Phys. Chem 2017:130;335-342. https://doi.org/10.1016/j.radphyschem.2016.09.01910.1016/j.radphyschem.2016.09.019 Search in Google Scholar

13. Sathiyaraj P, Samuel EJJ, Valeriano CCS, Kurudirek M. Effective atomic number and buildup factor calculations for metal nano particle doped polymer gel. Vacuum 2017:143;138-149. https://doi.org/10.1016/j.vacuum.2017.06.00510.1016/j.vacuum.2017.06.005 Search in Google Scholar

14. Saleh HH, Sharaf JM, Alkhateeb SB, Hamideen MS. Studies on equivalent atomic number and photon buildup factors for some tissues and phantom materials. Radiat. Phys. Chem. 2019:165;108388. https://doi.org/10.1016/j.radphyschem.2019.10838810.1016/j.radphyschem.2019.108388 Search in Google Scholar

15. Manjunatha HC, Rudraswamy B. Computation of exposure buildup factors in teeth. Radiation Physics and Chemistry. 2011;80(1):14-21. https://doi.org/10.1016/j.radphyschem.2010.09.00410.1016/j.radphyschem.2010.09.004 Search in Google Scholar

16. Berger M, Hubbell J, Seltzer S, Chang J, Coursey J, Sukumar R, Zucker D, Olsen K. XCOM: Photon Cross Sections Database (NIST). 2010 Search in Google Scholar

17. Berger MJ, Coursey JS, Zucker MA, Chang J. Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions. NISTIR 4999, 2017:1-17. https://doi.org/10.18434/T4NC7P Search in Google Scholar

18. Farahani S, Riyahi Alam N, Haghgoo S, Shirazi A, Geraily G, Gorji E, Kavousi N. The effect of bismuth nanoparticles in kilovoltage and megavoltage radiation therapy using magnetic resonance imaging polymer gel dosimetry. Radiat. Phys. Chem. 2020;170:108573. https://doi.org/10.1016/j.radphyschem.2019.10857310.1016/j.radphyschem.2019.108573 Search in Google Scholar

19. Kurudirek M, Aksakal O, Akkuş T. Investigation of the effective atomic numbers of dosimetric materials for electrons, protons and alpha particles using a direct method in the energy region 10 keV-1 GeV: a comparative study. Radiat. Environ. Biophys. 2015;54, 481-492. https://doi.org/10.1007/s00411-015-0606-510.1007/s00411-015-0606-526082026 Search in Google Scholar

20. Kurudirek M, Onaran T. Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and carbon ion. Radiat. Phys. Chem. 2015;112:125-138. https://doi.org/10.1016/j.radphyschem.2015.03.03410.1016/j.radphyschem.2015.03.034 Search in Google Scholar

21. Manohara SR, Hanagodimath SM, Thind KS, Gerward L. On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 2008:266, 3906-3912. https://doi.org/10.1016/j.nimb.2008.06.03410.1016/j.nimb.2008.06.034 Search in Google Scholar

22 Özpolat ÖF, Alım B, Şakar E, Büyükyıldız M, Kurudirek M. Phy-X/ZeXTRa: a software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions. Radiat. Environ. Biophys. 2020;59:321-329. https://doi.org/https://doi.org/10.1007/s00411-019-00829-710.1007/s00411-019-00829-731960126 Search in Google Scholar

23. Jarrah I, Radaideh MI, Kozlowski T, Rizwan-uddin. Determination and validation of photon energy absorption buildup factor in human tissues using Monte Carlo simulation. Radiat. Phys. Chem. 2019;160:15-25. https://doi.org/10.1016/j.radphyschem.2019.03.00810.1016/j.radphyschem.2019.03.008 Search in Google Scholar

24. Şakar E, Özpolat ÖFm Alım B, Sayyed MI, Kurudirek M. Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020;166:108496. https://doi.org/10.1016/j.radphyschem.2019.10849610.1016/j.radphyschem.2019.108496 Search in Google Scholar

25. Taylor ML, Smith RL, Dossing F, Franich RD. Robust calculation of effective atomic numbers: The Auto-Zeff software. Med. Phys. 2012;37:1769-1778. https://doi.org/10.1118/1.368981010.1118/1.368981022482600 Search in Google Scholar

26. Kurudirek M. Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV-1 GeV. App. Radiat. Isot. 2014;94:1-7. https://doi.org/10.1016/j.apradiso.2014.07.00210.1016/j.apradiso.2014.07.00225061891 Search in Google Scholar

27. Salehi D, Sardari D, Jozani MS. Investigation of some radiation shielding parameters in soft tissue. J. Radiat. Res. Appl. Sci. 2015:8(3):439-445. https://doi.org/10.1016/j.jrras.2015.03.00410.1016/j.jrras.2015.03.004 Search in Google Scholar

28. Singh VP, Badiger NM. Effective atomic numbers of some tissue substitutes by different methods: A comparative study. J.Med.Phy. 2014:39;24-31. https://doi.org/10.4103/0971-6203.12548910.4103/0971-6203.125489393122424600169 Search in Google Scholar

29. Sisin NNT, Abdul Razak K, Zainal Abidin S, et al. Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for high Dose Rate Brachytherapy. Int. J. Nanomedicine. 2019;14:9941-9954. https://doi.org/10.2147/IJN.S22891910.2147/IJN.S228919692722931908451 Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics