Cite

1. Akkawi I, Zmerly H. Osteoporosis: current concepts. Joints. 2018;6(2):122-127. https://doi.org/10.1055/s-0038-166079010.1055/s-0038-1660790605985930051110 Search in Google Scholar

2. Cao JJ. Effects of obesity on bone metabolism. Journal of Orthopaedic Surgery and Research. 2011;6(1):30. https://doi.org/10.1186/1749-799X-6-3010.1186/1749-799X-6-30314156321676245 Search in Google Scholar

3. Eastell R, O’Neill TW, Hofbauer LC, et al. Postmenopausal osteoporosis. Nature Reviews Disease Primers. 2016;2(1):1-16. https://doi.org/10.1038/nrdp.2016.6910.1038/nrdp.2016.6927681935 Search in Google Scholar

4. Sözen T, Özışık L, Başaran NÇ. An overview and management of osteoporosis. European Journal of Rheumatology. 2017;4(1):46. https://doi.org/10.5152/eurjrheum.2016.04810.5152/eurjrheum.2016.048533588728293453 Search in Google Scholar

5. Alswat KA. Gender disparities in osteoporosis. Journal of Clinical Medicine Research. 2017;9(5):382. https://doi.org/10.14740/jocmr2970w10.14740/jocmr2970w538017028392857 Search in Google Scholar

6. Hammad LF, Benajiba N. Lifestyle factors influencing bone health in young adult women in Saudi Arabia. African Health Sciences. 2017;17(2):524-531. https://doi.org/10.4314/ahs.v17i2.2810.4314/ahs.v17i2.28563703929062349 Search in Google Scholar

7. Langdahl BL. Osteoporosis in premenopausal women. Current Opinion in Rheumatology. 2017;29(4):410-415. https://doi.org/10.1097/BOR.000000000000040010.1097/BOR.000000000000040028394826 Search in Google Scholar

8. Lam TP, Ng BKW, Cheung LWH, et al. Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls with adolescent idiopathic scoliosis: a randomized, controlled trial. Osteoporosis International. 2013;24(5):1623-1636. https://doi.org/10.1007/s00198-012-2144-110.1007/s00198-012-2144-123011683 Search in Google Scholar

9. Pang MY, Lau RW, Yip SP. The effects of whole-body vibration therapy on bone turnover, muscle strength, motor function, and spasticity in chronic stroke: a randomized controlled trial. European Journal of Physical and Rehabilitation Medicine. 2013;49(4):439-450. Search in Google Scholar

10. McGee-Lawrence ME, Wenger KH, Misra S, et al. Whole-body vibration mimics the metabolic effects of exercise in male leptin receptor–deficient mice. Endocrinology. 2017;158(5):1160-1171. https://doi.org/10.1210/en.2016-125010.1210/en.2016-1250546083728323991 Search in Google Scholar

11. Minematsu A, Nishii Y, Imagita H, Sakata S. Whole body vibration at low-frequency can increase trabecular thickness and width in adult rats. Journal of Musculoskeletal & Neuronal Interactions. 2019;19(2):169. Search in Google Scholar

12. Huang CC, Tseng TL, Huang WC, et al. Whole-body vibration training effect on physical performance and obesity in mice. International Journal of Medical Sciences. 2014;11(12):1218. https://doi.org/10.7150/ijms.997510.7150/ijms.9975419612225317067 Search in Google Scholar

13. Bellia A, Salli M, Lombardo M, et al. Effects of whole body vibration plus diet on insulin-resistance in middle-aged obese subjects. International Journal of Sports Medicine. 2014;35(06):511-516. https://doi.org/10.1055/s-0033-135435810.1055/s-0033-1354358 Search in Google Scholar

14. Maddalozzo GF, Iwaniec UT, Turner RT, et al. Whole-body vibration slows the acquisition of fat in mature female rats. International Journal of Obesity. 2008;32(9):1348. https://doi.org/10.1038/ijo.2008.11110.1038/ijo.2008.111 Search in Google Scholar

15. Cvetkovic MM, Baptista JS, Vaz MP. Occupational vibration in urban bus and influence on driver’s lower limbs: a review. U. Porto Journal of Engineering. 2018;4(1):56-66. https://doi.org/10.24840/2183-6493_004.001_000510.24840/2183-6493_004.001_0005 Search in Google Scholar

16. Bovenzi M, Schust M, Mauro M. An overview of low back pain and occupational exposures to whole-body vibration and mechanical shocks. Med Lav. 2017;108(6):419-433. https://doi.org/10.23749/mdl.v108i6.6639 Search in Google Scholar

17. Kostyshyn N, Grzegotsky M, Servetnyk M. Assessment of structural and functional condition of rats bone tissue under the influence of various parameters of vibration. Current Issues in Pharmacy and Medical Sciences. 2018;31(3):148-153. https://doi.org/10.1515/cipms-2018-002910.1515/cipms-2018-0029 Search in Google Scholar

18. Kostyshyn NM, Kostyshyn LP, Servetnyk MI, Grzegotsky MR. The Peculiarities of Remodelling Muscle Tissue of Rats Under the Vibration Influence. Prilozi. 2019;40(1):59-65. https://doi.org/10.2478/prilozi-2019-000410.2478/prilozi-2019-0004 Search in Google Scholar

19. Clark SM, Iball J. The X-ray crystal analysis of bone. Progress in Biophysics and Biophysical Chemistry: Progress Series. 2016;7:226. https://doi.org/10.1016/S0096-4174(18)30127-610.1016/S0096-4174(18)30127-6 Search in Google Scholar

20. Bunaciu AA, UdriŞTioiu EG, Aboul-Enein HY. X-ray diffraction: instrumentation and applications. Critical Reviews in Analytical Chemistry. 2015;45(4):289-299. https://doi.org/10.1080/10408347.2014.94961610.1080/10408347.2014.949616 Search in Google Scholar

21. Rogers KD, Daniels P. An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials. 2002;23(12):2577-2585. https://doi.org/10.1016/S0142-9612(01)00395-710.1016/S0142-9612(01)00395-7 Search in Google Scholar

22. Piga G, Solinas G, Thompson TJU, et al. Is X-ray diffraction able to distinguish between animal and human bones? Journal of Archaeological Science. 2013;40(1):778-785. https://doi.org/10.1016/j.jas.2012.07.00410.1016/j.jas.2012.07.004 Search in Google Scholar

23. Tadano S, Giri B. X-ray diffraction as a promising tool to characterize bone nanocomposites. Science and Technology of Advanced Materials. 2012;12(6):064708. https://doi.org/10.1088/1468-6996/12/6/06470810.1088/1468-6996/12/6/064708509067327877458 Search in Google Scholar

24. Compston JE. Sex steroids and bone. Physiological reviews. 2001;81(1):419-447. https://doi.org/10.1152/physrev.2001.81.1.41910.1152/physrev.2001.81.1.41911152762 Search in Google Scholar

25. Manolagas SC, Kousteni S, Jilka RL. Sex steroids and bone. Recent Progress in Hormone Research. 2002;57:385-410. https://doi.org/10.1210/rp.57.1.38510.1210/rp.57.1.38512017554 Search in Google Scholar

26. Khosla S, Monroe DG. Regulation of bone metabolism by sex steroids. Cold Spring Harbor Perspectives in <edicine. 2018; 8(1): a031211. https://doi.org/10.1101/cshperspect.a03121110.1101/cshperspect.a031211574914128710257 Search in Google Scholar

27. Singh-Ospina N, Maraka S, Rodriguez-Gutierrez R, et al. Effect of sex steroids on the bone health of transgender individuals: a systematic review and meta-analysis. The Journal of Clinical Endocrinology & Metabolism. 2017;102(11):3904-3913. https://doi.org/10.1210/jc.2017-0164210.1210/jc.2017-0164228945851 Search in Google Scholar

28. Hlaing T.T., Compston J.E. Biochemical markers of bone turnover–uses and limitations. Annals of Clinical Biochemistry. 2014;51(2):189-202. https://doi.org/10.1177/000456321351519010.1177/000456321351519024399365 Search in Google Scholar

29. Morris H.A., Eastell R., Jorgensen N.R., et al. Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clinica Chimica Acta. 2017;467:34-41. https://doi.org/10.1016/j.cca.2016.06.03610.1016/j.cca.2016.06.03627374301 Search in Google Scholar

30. Gozdzialska A, Jaskiewicz J, Knapik-Czajka M, et al. Association of calcium and phosphate balance, vitamin D, PTH, and calcitonin in patients with adolescent idiopathic scoliosis. Spine. 2016;41(8):693-697. https://doi.org/10.1097/BRS.000000000000128610.1097/BRS.000000000000128627064335 Search in Google Scholar

31. Martin TJ, Sims NA. Calcitonin physiology, saved by a lysophospholipid. Journal of Bone and Mineral Research. 2015;30(2):212-215. https://doi.org/10.1002/jbmr.244910.1002/jbmr.244925581311 Search in Google Scholar

32. Felsenfeld AJ, Barton SL. Calcitonin, the forgotten hormone: does it deserve to be forgotten?. Clinical Kidney Journal. 2015;8(2):180-187. https://doi.org/10.1093/ckj/sfv01110.1093/ckj/sfv011437031125815174 Search in Google Scholar

33. Florencio-Silva R, da Silva Sasso GR, Sasso-Cerri E, et al. Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Research International. 2015:421746. https://doi.org/10.1155/2015/42174610.1155/2015/421746451549026247020 Search in Google Scholar

34. Clarke MV, Russell PK, Findlay DM, et al. A role for the calcitonin receptor to limit bone loss during lactation in female mice by inhibiting osteocytic osteolysis. Endocrinology. 2015;156(9):3203-3214. https://doi.org/10.1210/en.2015-134510.1210/en.2015-134526135836 Search in Google Scholar

35. Wysolmerski JJ. Parathyroid Hormone, Parathyroid Hormone–Related Protein, and Calcitonin. In Vitamin D. Academic Press. 2018; 849-870.10.1016/B978-0-12-809965-0.00046-X Search in Google Scholar

36. Klemm KM, Klein MJ. Biochemical markers of bone metabolism. Henry’s Clinical Diagnosis and Management by Laboratory Methods E-Book, 2017; 188. Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics