Cite

1. World Health Organization. Available at:https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en, Accessed on: January 2019. Search in Google Scholar

2. Dance D, Skinner C, Carlsson G. Breast dosimetry. Appl Radiat Isot. 1999;50(1):185-203. https://doi.org/10.1016/S0969-8043(98)00047-510.1016/S0969-8043(98)00047-5 Search in Google Scholar

3. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. Lippincott Williams and Wilkins; Philadelphia:222-50. 2006. Search in Google Scholar

4. Boone JM. Glandular breast dose for monoenergetic and high-energy x-ray beams: Monte Carlo assessment. Radiology. 1999;213(1):23-37. https://doi.org/10.1148/radiology.213.1.r99oc392310.1148/radiology.213.1.r99oc392310540637 Search in Google Scholar

5. Stanton L, Villafana T, Day J, Lightfoot D. Dosage evaluation in mammography. Radiology. 1984;150(2):577-84. https://doi.org/10.1148/radiology.150.2.669111910.1148/radiology.150.2.66911196691119 Search in Google Scholar

6. European Commission. European protocol on dosimetry in mammography. Report EUR 16263, EC, Bruxelles, Luxembourg. 1996. Search in Google Scholar

7. Delis H, Spyrou G, Panayiotakis G, Tzanakos G. DOSIS: A Monte Carlo simulation program for dose related studies in mammography. Eur J Radiol. 2005;54(3):371-6. https://doi.org/10.1016/j.ejrad.2004.07.01410.1016/j.ejrad.2004.07.01415899338 Search in Google Scholar

8. Bushberg JT, Boone JM. The essential physics of medical imaging. Lippincott Williams & Wilkins;238-282. 2011. Search in Google Scholar

9. Sookpeng S, Ketted P. Mean glandular dose from routine mammography. Naresuan University J: Sci Technol. 2006:14(3):19-26. Search in Google Scholar

10. Zankl M, Fill U, Hoeschen C, et al. Average glandular dose conversion coefficients for segmented breast voxel models. Radiat Prot Dosimetry. 2005;114(1-3):410-4. https://doi.org/10.1093/rpd/nch51310.1093/rpd/nch51315933148 Search in Google Scholar

11. Wu X, Barnes GT, Tucker D. Spectral dependence of glandular tissue dose in screen-film mammography. Radiology. 1991;179(1):143-8. https://doi.org/10.1148/radiology.179.1.200626510.1148/radiology.179.1.20062652006265 Search in Google Scholar

12. Sutter Health (CPMC). Available at: http://www.cpmc.org/services/women/breast/breast_cyst.html. Accessed on: 12 Nov, 2016. Search in Google Scholar

13. American Cancer Society. Available at: https://www.cancer.org/cancer/breast-cancer/non-cancerous-breast-conditions/fibrosis-and-simple-cysts-in-the-breast.html. Accessed on: 12 Nov, 2016. Search in Google Scholar

14. Aznar M, Hemdal B. Absorbed dose measurement in mammography. In: Hayat MA (ed.), Cancer Imaging: Lung and breast carcinomas (Vol. 1), Elsevier; 493-501. 2008. https://doi.org/10.1016/B978-012374212-4.50055-910.1016/B978-012374212-4.50055-9 Search in Google Scholar

15. Dance DR. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys Med Biol. 1990;35(9):1211-9. https://doi.org/10.1088/0031-9155/35/9/00210.1088/0031-9155/35/9/0022236205 Search in Google Scholar

16. Nigapruke K, Puwanich P, Phaisangittisakul N, Youngdee W. Monte Carlo simulation of average glandular dose and an investigation of influencing factors. J Radiat Res. 2010;51(4):441-8. https://doi.org/10.1269/jrr.1000810.1269/jrr.1000820523013 Search in Google Scholar

17. Hernandez AM, Seibert JA, Boone JM. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered. Med Phys. 2015;42(11):6337-48. https://doi.org/10.1118/1.493196610.1118/1.4931966460008526520725 Search in Google Scholar

18. Payamed Electronic Industries Co. Available at: http://www.payamed.com/pma100f.asp. Accessed on: 12 Jun, 2017. Search in Google Scholar

19. International Aero Engines. Available at: http://www.iae.it/serie-mammo_23.html. Accessed on: 12 Jun, 2017. Search in Google Scholar

20. Cranley K, Gilmore BJ, Fogarty GWA, Desponds L. Catalogue of diagnostic x-ray spectra and other data. Report No.78, Institute of Physics and Engineering in Medicine - IPEM. 1997. Search in Google Scholar

21. National Institute of Standards and Technology. Available at: https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. Accessed on: 12 Jun, 2017. Search in Google Scholar

22. Delis H, Spyrou G, Tzanakos G, Panayiotakis G. The influence of mammographic X-ray spectra on absorbed energy distribution in breast: Monte Carlo simulation studies. Radiat Meas. 2005;39(2):149-55. https://doi.org/10.1016/j.radmeas.2004.04.00310.1016/j.radmeas.2004.04.003 Search in Google Scholar

23. Rezaei FS. Using Monte Carlo method for evaluation of kVp and mAs variation effect on absorbed dose in mammography. European Congress of Radiology, 3 March 2011; Vienna, Austria. Search in Google Scholar

24. Fredenberg E, Dance DR, Willsher P, Moa E, von Tiedemann M, Young KC, et al. Measurement of breast-tissue x-ray attenuation by spectral mammography: first results on cyst fluid. Phys Med Biol. 2013;58(24):8609. https://doi.org/10.1088/0031-9155/58/24/860910.1088/0031-9155/58/24/860924254377 Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics