Cite

Xue, J., Ma, X., Yu, L., Tang, C. & Ma, J. (2012). Development of a novel acidification corrosion inhibitor for P110 steel at high temperature. Sci. Adv. Mater. 4(1). DOI: 10.1166/sam.2012.1252. Search in Google Scholar

Solomon, M.M., Uzoma, I.E., Olugbuyiro, J.A.O. & Ademosun, O.T. (2022). A censorious appraisal of the oil well acidizing corrosion inhibitors. J. Petrol. Sci. Eng. 215(Part B), 110711. DOI: 10.1016/j.petrol.2022.110711. Search in Google Scholar

Wang, Q., Zhang, R., Zhang, L., Gao, M., Du, W. & Gu, X. (2021). Preparation of eco-friendly acidic corrosion inhibitors from ilex chinensis sims leaves. J. Biobased Mater. Bio. 15(4), 472–477. DOI: 10.1166/jbmb.2021.2090. Search in Google Scholar

Ishizaki, T., Masuda, Y. & Sakamoto, M. (2011). Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution. Langmuir 27(8), 4780–4788. DOI: 10.1021/la2002783. Search in Google Scholar

Khaled, K.F., Hamed, M.N.H., Abdel-Azim, K.M. & Abdelshafi, N.S. (2011). Inhibition of copper corrosion in 3.5% NaCl solutions by a new pyrimidine derivative: electrochemical and computer simulation techniques. J. Solid State Electrochem. 15(4), 663–673. DOI: 10.1007/s10008-010-1110-0. Search in Google Scholar

S.A. Brown, J.P.S. (2010). Crevice and fretting corrosion of stainless-steel plates and screws. J. Biomed. Mater. Res. 15(6), 867–878. DOI: 10.1002/jbm.820150611. Search in Google Scholar

Al Juhaiman, L.A., Abu Mustafa, A. & Mekhamer, W.K. (2013). Polyvinyl pyrrolidone as a green corrosion inhibitor for carbon steel in alkaline solutions containing NaCl. Anti-Corros. Method. Mater. 60(1), 28–36. DOI: 10.1108/00035591311287429. Search in Google Scholar

Chen, G., Yan, J., Liu, Q., Zhang, J., Li, H., Li, J., Qu, C. & Zhang, Y. (2019). Preparation and surface activity study of amino acid surfactants. C.R. Chim. 22(4), 277–282. DOI: 10.1016/j.crci.2018.11.009. Search in Google Scholar

Nabatipour, S., Mohammadi, S. & Mohammadi, A. (2020). Synthesis and comparison of two chromone based Schiff bases containing methoxy and acetamido substitutes as highly sustainable corrosion inhibitors for steel in hydrochloric acid. J. Mol. Struc. 1217(5), 128367. DOI: 10.1016/j.molstruc.2020.128367. Search in Google Scholar

Chen, Y., Chen, Z. & Zhuo, Y. (2022). Newly synthesized morpholinyl mannich bases as corrosion inhibitors for N80 steel in acid environment. Materials. 15(12), 4218. DOI: 10.3390/MA15124218. Search in Google Scholar

Wang, P., Gu, X., Wang, Q., Dong, J., Dong, S., Zhang, J., Zhu, S. & Chen, G. (2021). Corrosion inhibition of triazines in sulfur-containing oilfield wastewater. Desalinat. Water Treat. 235, 107–116. DOI: 10.5004/dwt.2021.27652. Search in Google Scholar

Liu, Y., Chen, L., Tang, Y., Zhang, X. & Qiu, Z. (2022). Synthesis and characterization of nano-SiO2@octadecylbisimidazoline quaternary ammonium salt used as acidizing corrosion inhibitor. Rev. Adv. Mater. Sci. 61(1), 186–194. DOI: 10.1515/rams-2022-0006. Search in Google Scholar

Zhou, T., Yuan, J., Zhang, Z., Xin, X. & Xu, G. (2019). The comparison of imidazolium Gemini surfactant [C14-4-C14im]Br2 and its corresponding monomer as corrosion inhibitors for A3 carbon steel in hydrochloric acid solutions: Experimental and quantum chemical studies. Colloid. Surf. A. 575, 57–65. DOI: 10.1016/j.colsurfa.2019.05.004. Search in Google Scholar

Donahue, F.M. & Nobe, K. (1965). Theory of Organic Corrosion Inhibitors: Adsorption and Linear Free Energy Relationships. J. Electrochem. Soc. 112(9), 886. DOI: 10.1149/1.2423723. Search in Google Scholar

Ahmed, S.K., Ali, W.B. & Khadom, A.A. (2018). Synthesis and characterization of new triazole derivatives as corrosion inhibitors of carbon steel in acidic medium. J. Bio- and Tribo-Corrosion, 35(4), 233–251. DOI: 10.1007/s40735-018-0209-1. Search in Google Scholar

Hassan, H.H., Abdelghani, E. & Amin, M.A. (2007). Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives. Electrochim. Acta. 52(22), 6359–6366. DOI: 10.1016/j.electacta.2007.04.046. Search in Google Scholar

Hosseini, M.G., Ehteshamzadeh, M. & Shahrabi, T. (2007). Protection of mild steel corrosion with Schiff bases in 0.5 M H2SO4 solution. Electrochim. Acta. 52(11), 3680–3685. DOI: 10.1016/j.electacta.2006.10.041. Search in Google Scholar

Bai, Y., Zhang, J., Dong, S., Li, J., Zhang, R., Pu, C. & Chen, G. (2020). Effect of anion on the corrosion inhibition of cationic surfactants and a mechanism study. Desalinat. Water Treat. 188, 130–139. DOI: 10.5004/dwt.2020.25431. Search in Google Scholar

Liu, Q., Gao, M., Zhang, J., Zhang, R., Li, J., Chen, S. & Chen, G. (2020). Synthesis and Interface Activity of Cetyltrimethylammonium Benzoate. Russ. J. Phys. Chem. B+. 14(1), 73–80. DOI: 10.1134/S1990793120010066. Search in Google Scholar

Azhar, M.E., Mernari, B., Traisnel, M., Bentiss, F. & Lagrenée, M. (2001). Corrosion inhibition of mild steel by the new class of inhibitors [2,5-bis(N-pyridyl)-1,3,4-thiadiazoles] in acidic media. Corros. Sci. 43, 2229–2238. DOI: 10.1016/S0010-938X(01)00034-8. Search in Google Scholar

Liu, P., Zhu, Y. & Zhao, L. (2020). New corrosion inhibitor for 13Cr stainless steel in 20% HCl solution. Anti-Corros. Method. Mater. 67(6), 557–564. DOI: 10.1108/ACMM-12-2019-2228. Search in Google Scholar

Cui, M. & Li, X. (2021). Nitrogen and sulfur Co-doped carbon dots as ecofriendly and effective corrosion inhibitors for Q235 carbon steel in 1 M HCl solution. RSC Adv. 11(35), 21607–21621. DOI: 10.1039/d1ra02775a. Search in Google Scholar

Yıldırım, A. & Çetin, M. (2008). Synthesis and evaluation of new long alkyl side chain acetamide, isoxazolidine and isoxazoline derivatives as corrosion inhibitors. Corros. Sci. 50(1), 155–165. DOI: 10.1016/j.corsci.2007.06.015. Search in Google Scholar

Kumar, M.R., Mahendra, Y. & I.B., O. (2022). Electrochemical and computational investigation of adsorption and corrosion inhibition behaviour of 2-aminobenzohydrazide derivatives at mild steel surface in 15% HCl. Mater. Chem. Phys. 290(15), 126666. DOI: 10.1016/j.matchemphys.2022.126666. Search in Google Scholar

Abd El-Aziz S., Fouda, Samir A., Abd El-Maksoud, Elsherbiny H. El-Sayed, Hazem A., Elbaz & Abousalem, A.S. (2021). Experimental and surface morphological studies of corrosion inhibition on carbon steel in HCl solution using some new hydrazide derivatives. RSC Adv. 11(22), 13497–13512. DOI: 10.1039/D1RA01405F. Search in Google Scholar

Shetty, P. (2018). Hydrazide Derivatives: An Overview of Their Inhibition Activity against Acid Corrosion of Mild Steel. S. Afr. J. Chem. 71, 46–50. DOI: 10.17159/0379-4350/2018/v71a6. Search in Google Scholar

Sunil, D., Kumari, P., Shetty, P. & Rao, S.A. (2022). Indole hydrazide derivatives as potential corrosion inhibitors for mild steel in HCl acid medium: experimental study and theoretical calculations. T. Indian. I. Metals. 75(1), 11–25. DOI: 10.1007/s12666-021-02382-8. Search in Google Scholar

Siutkina, A.I., Sharavyeva, Y.O., Chashchina, S.V., Shipilovskikh, S.A. & Igidov, N.M. (2022). Synthesis and anti-inflammatory activity of N′-substituted 2-[2-(diarylmethylene) hydrazinyl]-5,5-dimethyl-4-oxohex-2-enehydrazides. Russ. Chem. Bull. 71(3), 496–501. DOI: 10.1007/s11172-022-3439-9. Search in Google Scholar

Baleeva, N.S., Rybakov, V.B., Ivleva, E.A., Shiryaev, V.A. & Klimochkin, Y.N. (2020). Synthesis and chemical transformations of 7-Hydroxybicyclo[3.3.1]nonane-3-carbohydrazide. Russ. J. Org. Chem. 56(11), 1942–1951. DOI: 10.1134/S1070428020110081. Search in Google Scholar

Liu, Q., Gao, M., Zhao, Y., Li, J., Qu, C., Zhang, J. & Chen, G. (2020). Synthesis and interfacial activity of a new quaternary ammonium surfactant as an oil/gas field chemical. Tenside Surfact. Det. 57(1), 90–96. DOI: 10.3139/113.110665. Search in Google Scholar

Li, S., Guo, C., Wang, X., Guan, C. & Chen, G. (2022). Corrosion inhibition coating based on the self-assembled polydopamine films and its anti-corrosion properties. Polymers (Basel). 14(4), 794–807. DOI: 10.3390/polym14040794. Search in Google Scholar

Elsharif, A.M., Abubshait, S.A., Abdulazeez, I. & Abubshait, H.A. (2020). Synthesis of a new class of corrosion inhibitors derived from natural fatty acid: 13-docosenoic acid amide derivatives for oil and gas industry. Arab. J. Chem. 13(5), 5363–5376. DOI: 10.1016/j.arabjc.2020.03.015. Search in Google Scholar

Elsharif, A.M., Abubshait, S.A., Abdulazeez, I. & Abubshait, H.A. (2020). Synthesis, characterization and corrosion inhibition studies of polyunsaturated fatty acid derivatives on the acidic corrosion of mild steel: Experimental and computational studies. J. Mol. Liq. 319, 114162. DOI: 10.1016/j.molliq.2020.114162. Search in Google Scholar

Elsharif, A.M. (2023). Synthesis and evaluation of newly E-octadec-9-enoic acid derivatives as sustainable corrosion inhibitors for mild steel in 1.0 M HCl. Arab. J. Basic Appl. Sci. 30(1), 26–46. DOI: 10.1080/25765299.2022.2164649. Search in Google Scholar

Zhu, S., Li, Y., Wang, H., Li, J., Fu, A., Chen, G., Ma, D., Li, X. & Cheng, F. (2022). Corrosion resistance mechanism of mica-graphene/epoxy composite coating in CO2-Cl system. Materials. 15(3), 1194. DOI: 10.3390/ma15031194. Search in Google Scholar

Chaouiki, A., Lgaz, H., Salghi, R., Gaonkar, S.L., Bhat, S.K., Jodeh, S., Toumiat, K. & Oudda, H. (2019). New benzohydrazide derivative as corrosion inhibitor for carbon steel in a 1.0 M HCl solution: Electrochemical, DFT and monte carlo simulation studies. Portugaliae Electrochim. Acta. 37(3), 147–165. DOI: 10.4152/PEA.201903147. Search in Google Scholar

Alarfaji, S., Ali, I., Bani-Fwaz, M. & Bedair, M. (2021). Synthesis and assessment of two malonyl dihydrazide derivatives as corrosion inhibitors for carbon steel in acidic media: Experimental and theoretical studies. Molecules (Basel, Switzerland). 26(11), 3138–3155. DOI: 10.3390/molecules26113183. Search in Google Scholar

Lingjian, K. & Mingyang, Z. (2022). Adsorption of methylene blue on chestnut shell-based activated carbon: Calculation of thermodynamic parameters for solid-liquid interface adsorption. Catalysts. 12(8), 813–823. DOI: 10.3390/catal12080813. Search in Google Scholar

Lin, J., Liu, Q., Zhang, J., Wu, Y., Li, H., Ma, Y., Qu, C., Song, W. & Chen, G. (2019). Corrosion inhibition and structure-efficiency relationship study of CTAC and CDHAC. Desalinat. Water Treat. 1391–1396. DOI: 10.5004/dwt.2019.23269. Search in Google Scholar

Khandelwal, R., Sahu, S. & Arora, S. (2018). Comparative study of Schiff’s bases and plant extract as corrosion inhibitors. Adv. Sci. Engin. Med. 10(10), 1023–1028. DOI: 10.1166/asem.2018.2198. Search in Google Scholar

Gu, X., Zhang, H., Zhang, Z., Du, W., Zhu, S. & Chen, G. (2021). Modification and application of walnut peel extract as acidic corrosion inhibitor. J. Biobased. Mater. Bio. 15(6), 820–825. DOI: 10.1166/jbmb.2021.2138. Search in Google Scholar

Herrag, L., Hammouti, B., Elkadiri, S., Aouniti, A., Jama, C., Vezin, H. & Bentiss, F. (2010). Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations. Corros. Sci. 52(9), 3042–3051. DOI: 10.1016/j.corsci.2010.05.024. Search in Google Scholar

Obi-Egbedi, N.O. & Obot, I.B. (2011). Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4. Corros. Sci. 53(1), 263–275. DOI: 10.1016/j.corsci.2010.09.020. Search in Google Scholar

Elsharif, A.M. (2023). Newly synthesized nanohybrids based on gallic acid derivatives for pipeline steel corrosion in hydrochloride acid medium. Prog. Org. Coat., 185, 107869. DOI: 10.1016/j.porgcoat.2023.107869. Search in Google Scholar

Xu, Z., Cao, X., Wang, Y., Slaný, M., Unčík, S., Li, S. & Tang, Y. (2023). Effective corrosion inhibitor of mild steel in marine environments: Synthesis and application of hydrazides. Sustainable Mater. Tech. 38, e00747. DOI: 10.1016/j.susmat.2023.e00747. Search in Google Scholar

Gao, M., Zhang, J., Liu, Q., Li, J., Zhang, R. & Chen, G. (2019). Effect of the alkyl chain of quaternary ammonium cationic surfactants on corrosion inhibition in hydrochloric acid solution. Comptes Rendus Chim. 22(5), 355–362. DOI: 10.1016/j.crci.2019.03.006. Search in Google Scholar

John, S., Kuruvilla, M. & Joseph, A. (2012). Surface morphological and impedance spectroscopic studies on the interaction of polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) with mild steel in acid solutions. Res. Chem. Intermed. 39(3), 1169–1182. DOI: 10.1007/s11164-012-0675-x. Search in Google Scholar

Shaban, S.M., Elbhrawy, M.F., Fouda, A.S., Rashwan, S.M., Ibrahim, H.E. & Elsharif, A.M. (2021). Corrosion inhibition and surface examination of carbon steel 1018 via N-(2-(2-hydroxyethoxy)ethyl)-N,N-dimethyloctan-1-aminium bromide in 1.0 M HCl. J. Mol. Struct. 1227. DOI: 10.1016/j.molstruc.2020.129713. Search in Google Scholar

Cai, K., Zuo, S., Luo, S., Yao, C., Liu, W., Ma, J., Mao, H. & Li, Z. (2016). Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv. 6(98), 95965–95972. DOI: 10.1039/C6RA19618G. Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering