Open Access

Hydrodynamics of two- and three-phase systems in an agitated vessel with two agitators


Cite

Stręk, F. (1981). Agitation and agitated vessels (in Polish), WNT, Warszawa. Search in Google Scholar

Kamieński, J. (2004). Agitation of multiphase systems (in Polish), WNT, Warszawa. Search in Google Scholar

Moucha, T., Linek, V. & Prokopova, E. (2003). Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem. Eng. Sci. 58, 1839–1846. DOI: 10.1016/S0009-2509(02)00682-6. Search in Google Scholar

Montante, G. & Paglianti, A. (2015). Gas hold-up distribution and mixing time in gas–liquid stirred tanks. Chem. Eng. J. 279, 648–658. DOI: 10.1016/j.cej.2015.05.058. Search in Google Scholar

Petricek, R., Moucha, T., Rejl, F.J., Valenz, L., Haidl J. & Cmelikova, T. (2018). Volumetric mass transfer coefficient, power input and gas hold-up in viscous liquid in mechanically agitated fermenters. Measurements and scale-up. Int. J. Heat Mass Transf. 124, 1117–1135. DOI: 10.1016/j.ijheatmasstransfer.2018.04.045. Search in Google Scholar

Xiao, Y., Li, X., Ren, S., Mao, Z. & Yang, C. (2020). Hydrodynamics of gas phase under typical industrial gassing rates in a gas-liquid stirred tank using intrusive image-based method. Chem. Eng. Sci. 227, 115923. DOI: j.ces.2020.115923. Search in Google Scholar

Rahimzadeh, A., Ein-Mozaffari, F. & Lohi, A. (2022). Investigation of power consumption, torque fluctuation and gas hold-up in coaxial mixers containing a shear-thinning fluid: Experimental and numerical approaches. Chem. Eng. Process.: Process Intensif. 177, 108983. DOI: 10.1016/j.cep.2022.188983. Search in Google Scholar

Rahimzadeh, A., Ein-Mozaffari, F. & Lohi, A. (2022). Scale-up study of aerated coaxial mixing reactors containing non-newtonian power-law fluids: Analysis of gas hold-up, cavity size, and power consumption. J. Ind. Eng. Chem. 113, 293–315. DOI: 10.1016/j.jiec.2022.06.004. Search in Google Scholar

Frankiewicz, S.S. & Woziwodzki, Sz. (2023). Gas hold-up in an unsteady stirred vessel by means of infinite series. Pol. J. Chem. Tech. 25(2), 30–35. DOI: 10.2478/pjct-2023-0014. Search in Google Scholar

Garcia-Ochoa, F. & Gomez E. (2004). Theoretical prediction of gas-liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks. Chem. Eng. Sci. 59, 2489–2501. DOI: 10.1016/j.ces.2004.02.009. Search in Google Scholar

Busciglio, A., Grisafi, F., Scargiali, F. & Brucata A. (2013). On the measurement of local gas hold-up, interfacial area and bubble size distribution in gas-liquid contactors via light sheet and image analysis: Imaging technique and experimental results. Chem. Eng. Sci. 102, 551–566. DOI: 10.1016/j.ces.2013.08.029. Search in Google Scholar

Busciglio, A., Opletal, M., Moucha, T., Montante, G. & Paglianti A. (2017). Measurement of gas hold-up distribution in stirred vessels equipped with pitched blade turbines by means of Electrical Resistance Tomography. Chem. Eng. Trans. 57, 1273–1278. DOI: 10.3303/CET1757213. Search in Google Scholar

Jamshidzadeh, M., Ein-Mozaffari, F. & Lohi, A. (2020). Local and overall gas holdup in an aerated coaxial mixing system containing a non-Newtonian fluid. AIChE J. 66, e17016. DOI: 10.1002/aic.17016. Search in Google Scholar

Cudak, M. & Rakoczy, R. (2022). Hydrodynamics of gas-liquid and biophase-gas-liquid systems in stirred tanks of different scales. Korean J. Chem. Eng. 39(11), 2959–2971. DOI: 10.1007/s11814-022-1281-2. Search in Google Scholar

Newell, R. & Grano, S. (2007). Hydrodynamics and scale up in Rushton turbine flotation cells: Part 1 – Cell hydrodynamics. Int. J. of Miner. Process. 81, 224–236. DOI: 10.1016/j.minpro.2006.06.007. Search in Google Scholar

Khalili, F., Nasr, M.R.J., Kazemzadeh, A. & Ein-Mozaffari, F. (2018). Analysis of gas holdup and bubble behavior in a biopolymer solution inside a bioreactor using tomography and dynamic gas disengagement techniques. J. Chem. Technol. Biotechnol. 93, 340–349. DOI: 10.1002/jctb.5356. Search in Google Scholar

Cudak, M. (2016). Experimental and numerical analysis of transfer processes in a biophase-gas-liquid system in a bioreactor with an impeller (in Polish). BEL Studio Sp. z o.o., Warszawa. Search in Google Scholar

de Jesus, S.S., Moreira Neto, J. & Filho, R.M. (2017). Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study. Biochem. Eng. J. 118, 70–81. DOI: 10.1016/j.bej.2016.11.019. Search in Google Scholar

Garcia-Ochoa, F., Gomez, E. & Santos, V.E. (2020). Fluid dynamic conditions and oxygen availability effects on microbial cultures in STBR: An overview. Biochem. Eng. J. 164, 107803. DOI: 10.1016/j.bej.2020.107803. Search in Google Scholar

Cudak, M. (2014). Hydrodynamic characteristics of mechanically agitated air-aqueous sucrose solutions. Chem. Process Eng. 35(1), 97–107. DOI: 10.2478/cpe-2014-0007. Search in Google Scholar

Cudak, M. (2020). The effect of vessel scale on gas hold-up in gas-liquid systems. Chem. Process. Eng. 41(4), 241–256. DOI: 10.1515/cpe-2016-0005. Search in Google Scholar

Barros, P.A., Ein-Mozaffari, F. & Lohi A. (2022). Gas Dispersion in Non-Newtonian Fluid with Mechanically Agitated Systems: A review. Processes 10, 275–304 DOI: 10.3390/pr10020275. Search in Google Scholar

Major-Godlewska, M. & Radecki, D. (2018). Experimental analysis of gas hold-up for gas-liquid system agitated in a vessel equipped with two impellers and vertical tubular baffles. Pol. J. Chem. Tech. 20(1), 7–12. DOI: 10.2478/pjct-2018-0002. Search in Google Scholar

Major-Godlewska, M. & Cudak, M. (2022). Gas hold-up in vessel with dual impellers and different baffles. Energies 2022, 15, 8685. DOI: 10.3390/en15228685. Search in Google Scholar

Vlaev, S.D., Valeva, M.D. & Mann, R. (2002). Some effects of rheology on the spatial distribution of gas hold-up in a mechanically agitated vessel. Chem. Eng. J. 87, 21–30. PII: S1385-8947(01)00208-X. Search in Google Scholar

Yawalkar, A.A., Heesing, A.B.M., Versteeg, G.F. & Pangarkar, V.G. (2002). Gas hold-up in stirred tank reactors in the presence of inorganic electrolytes. Can. J. Chem. Eng. 80, 791–799. DOI: 10.1002/cjce.5450800502. Search in Google Scholar

Karcz, J., Siciarz, R. & Bielka, I. (2004). Gas hold-up in a reactor with dual system of impellers. Chem. Pap. 58(6), 404–409. Search in Google Scholar

Zhang, L., Pan, Q. & Rempel, G.L. (2006). Liquid phase mixing and gas hold-up in a multistage-agitated contactor with co-current up flow of air/viscous fluids. Chem. Eng. Sci. 61, 6189–6198. DOI: 10.1016/j.ces.2006.06.0. Search in Google Scholar

Khare, A.S. & Niranjan, K. (2004). The effect of vessel diameter on time dependent gas hold-up variations in highly viscous impeller agitated liquids. Chem. Eng. Process. 43, 571–573. DOI: 10.1016/S0255-2701(03)00044-8. Search in Google Scholar

Major-Godlewska, M. & Karcz, J. (2011). Process characteristics for a gas-liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles. Chem. Pap. 65(2), 132–138. DOI: 10.2478/s11696-010-0080-0. Search in Google Scholar

Chinnasamy, G., Kaliannan, S., Eldho, A. & Nadarajan, D. (2016). Development and performance analysis of a novel agitated vessel. Korea. J. Chem. Eng. 33(4), 1181–1185. DOI: 10.1007/s11814-015-0264-y. Search in Google Scholar

Vasconcelos, J.M.T., Orvalho, S.C.P., Rodrigues, A.M.A.F. & Alves, S.S. (2000). Effect of blade shape on the performance of six-bladed disk turbine impellers. Ind. Eng. Chem. Res. 39, 203–213. DOI: 10.1021/ie9904145. Search in Google Scholar

Pinelli, D., Bakker, A., Myers, K.J., Reeder, M.F. & Magelli, F. (2003). Some features of a novel gas dispersion impeller in a dual-impeller configuration. Chem. Eng. Res. Des. 81, 448–454. DOI: 10.1205/026387603765173709. Search in Google Scholar

Zhang, L., Pan, Q. & Rempel, G.L. (2005). Liquid backmixing and phase hold-up in a gas-liquid multistage agitated contactor. Ind. Eng. Chem. Res. 44, 5304–5311. DOI: 10.1021/ie491701. Search in Google Scholar

Bao, Y., Yang, J.Y., Chen L. & Gao Z. (2012). Influence of the top impeller diameter on the gas dispersion in a sparged multi-impeller stirred tank. Ind. Eng. Chem. Res. 51, 12411–12420. DOI: 10.1021/ie301150b. Search in Google Scholar

Xie, M., Xia, J., Zhou, Z., Chu, J., Zhuang, Y. & Zhang, S. (2014). Flow pattern, mixing, gas hold-up and mass transfer coefficient of triple-impeller configurations in stirred tank bioreactors. Ind. Eng. Chem. Res. 53, 5941–5953. DOI: 10.1021/ie400831s. Search in Google Scholar

Jamshed, A., Cooke, M., Ren, Z. & Rodgers, T.L. (2018). Gas–liquid mixing in dual agitated vessels in the heterogeneous regime. Chem. Eng. Res. Des. 133, 55–69. DOI: 10.1016/j.cherd.2018.02.034. Search in Google Scholar

Jegatheeswaran, S. & Ein-Mozaffari, F. (2020). Use of Gas Helicity as an Indicator to Evaluate Impeller Design and its Gas Holdup: Proof of Concept for the Intensification of Gas-Liquid Mixing, Chem. Eng. Process.: Process Intensif. 156, 108091. DOI: 10.1016/j.cep.2020.108091. Search in Google Scholar

Adamiak, R. & Karcz, J. (2007). Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas-liquid systems, Chem. Pap. 61, 16–23. DOI: 10.2478/s11696-006-0089-6. Search in Google Scholar

Karcz, J. (1998). Studies of gas hold-up for slender agitated vessel equipped with single or double system of disc turbines (in Polish), Inż. Chem. Proc. 19, 335–352. Search in Google Scholar

Adamiak, R. (2005). Research on the conditions of gas dispersion in liquids in agitated vessels of various scales, PhD Thesis. Szczecin University of Technology. Search in Google Scholar

Karcz, J, Siciarz, R. & Bielka, I. (2004). Gas hold-up in a rector with dual system of impellers, Chem. Pap. 58, 404–409. Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering