Cite

Marjani, A., Nakhjiri, A.T., Adimi, M., Jirandehi, H.F. & Shirazian, S. (2020). Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci. Reports, 10(1), 1–11. DOI: 10.1038/s41598-020-58472-y.Search in Google Scholar

Abdullah, T.A., Juzsakova, T., Rasheed, R.T., Salman, A.D., Adelikhah, M., Le, P. & Crețescu, I. (2021). V2O5 Nanoparticles for Dyes Removal from Water. Chem. J. Moldova, 16(2), 102–111. DOI: 10.19261/cjm.2021.911.Search in Google Scholar

Velusamy, S., Roy, A., Sundaram, S. & Mallick, T.K. (2021). A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. The Chem. Record, 21(7), 1570–1610. DOI: 10.1002/tcr.202000153.Search in Google Scholar

Lim, J.Y., Mubarak, N., Abdullah, E., Nizamuddin, S. & Khalid, M. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review. J. Ind. Engin. Chem. 66, 29–44. DOI: 10.1016/j.jiec.2018.05.028.Search in Google Scholar

Salman, A.D., Juzsakova, T., Jalhoom, M.G., Le Phuoc, C., Mohsen, S., Adnan Abdullah, T., Zsirka, B., Cretescu, I., Domokos, E. & Stan, C.D. (2019). Novel Hybrid Nanoparticles: Synthesis, Functionalization, Characterization, and Their Application in the Uptake of Scandium (III)Ions from Aqueous Media. Materials, 13(24), 5727. DOI: 10.3390/ma13245727.Search in Google Scholar

Al Kausor, M. & Chakrabortty, D. (2021). Graphene oxide based semiconductor photocatalysts for degradation of organic dye in waste water: A review on fabrication, performance enhancement and challenges. Inorganic Chem. Commun. 129, 108630. DOI: 10.1016/j.inoche.2021.108630.Search in Google Scholar

Grape E.S., Chacón-García A.J., Rojas S., Pérez Y., Jaworski A., Nero M., Åhlén M., Martínez-Ahumada E., Feindt A.E. & Pepillo, M. (2023). Removal of pharmaceutical pollutants from effluent by a plant-based metal–organic framework. Nature Water 1, 1–10. DOI: 10.1038/s44221-023-00070-z.Search in Google Scholar

Ikram, M., Raza, A., Imran, M., Ul-Hamid, A., Shahbaz, A. & Ali, S. (2020). Hydrothermal Synthesis of Silver Decorated Reduced Graphene Oxide (rGO) Nanoflakes with Effective Photocatalytic Activity for Wastewater Treatment. Nanoscale Res Lett, 15, 95. DOI: 10.1186/s11671-020-03323-y.Search in Google Scholar

Salman, A.D., Juzsakova, T., Ákos, R., Ibrahim, R.I., Al-Mayyahi, M.A. Mohsen, S., Abdullah, T.A. & Domokos, E. (2021). Synthesis and surface modification of magnetic Fe3O4@ SiO2 core-shell nanoparticles and its application in uptake of scandium (III) ions from aqueous media. Environ. Sci. Pollut. Res. 28, 28428–28443. DOI: 10.1007/s11356-020-12170-4.Search in Google Scholar

Adel, M., Ahmed, M. A., Elabiad, M.A. & Mohamed, A.A. (2022). Removal of heavy metals and dyes from waste-water using graphene oxide-based nanomaterials: A critical review. Environ. Nanotech. Monit. & Manag. 18, 100719. DOI: 10.1016/j.enmm.2022.100719.Search in Google Scholar

Hussain, I., Hussain, A., Ahmad, A., Rahman, H., Alajmi, M.F., Ahmed, F. & Amir, S. (2018). New generation graphene oxide for removal of polycyclic aromatic hydrocarbons. Graphene-Based Nanotechnol. for Energy Environ. Applic. 241–266. DOI: 10.1016/B978-0-12-815811-1.00014-4.Search in Google Scholar

Diraki, A., Mackey, H.R., McKay, G. & Abdala, A. (2019). Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. J. Environ. Chem. Engin. 7(3), 103106. DOI: 10.1016/j.jece.2019.103106.Search in Google Scholar

Cerro-Lopez, M. & Méndez-Rojas, M.A. (2019). Application of nanomaterials for treatment of wastewater containing pharmaceuticals. Ecopharmacovigilance: Multidisc. Approaches to Environ. Safety of Medicines, 201–219, 2019. DOI: 10.1007/698_2017_143.Search in Google Scholar

Zhang, J., Lu, X., Shi, C., Yan, B., Gong, L., Chen, J., Xiang, L., Xu, H., Liu, Q. & Zeng, H. (2019). Unraveling the molecular interaction mechanism between graphene oxide and aromatic organic compounds with implications on wastewater treatment. Chem. Engin. J. 358, 842–849. DOI: 10.1016/j. cej.2018.10.064.Search in Google Scholar

Rabchinskii, M.K., Ryzhkov, S.A., Kirilenko, D.A., Ulin, N.V., Baidakova, M.V., Shnitov, V.V., Pavlov, S.I., Chumakov, R.G., Stolyarova, D.Y., Besedina, N.A., Shvidchenko, A.V., Potorochin, D.V., Roth, F., Smirnov, D.A., Gudkov, M.V., Brzhezinskaya, M., Lebedev, O.I., Melnikov, V.P. & Brunkov, P. N. (2020). From graphene oxide towards aminated graphene: Facile synthesis, its structure and electronic properties. Scientific Reports, 10(1), 1-12. DOI: 10.1038/s41598-020-63935-3.Search in Google Scholar

Yu, Z., Zeng, H., Min, X. & Zhu, X. (2020). High-performance composite photocatalytic membrane based on titanium dioxide nanowire/graphene oxide for water treatment. J. Appl. Pol. Sci. 137(12), 48488. DOI: 10.1002/app.48488.Search in Google Scholar

Wu, W., Shi, Y., Liu, G., Fan, X., & Yu, Y. (2020). Recent development of graphene oxide based forward osmosis membrane for water treatment: A critical review. Desalination, 491, 114452. DOI: 10.1016/j.desal.2020.114452.Search in Google Scholar

Rasheed, M., Shihab, S. & Sabah, O.W. (2021). An investigation of the Structural, Electrical and Optical Properties of Graphene-Oxide Thin Films Using Different Solvents. J. Phys. 1795(1), 012052. DOI: 10.1088/1742-6596/1795/1/012052.Search in Google Scholar

Wang, Y., Li, S., Yang, H. & Luo, J. (2020). Progress in the functional modification of graphene/graphene oxide: a review. RSC Advances, 10(26), 15328–15345. DOI: 10.1039/d0ra01068e.Search in Google Scholar

Ajala, O., Tijani, J., Bankole, M. & Abdulkareem, A. (2022). A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment. Environ. Nanotech. Monit. & Manag. 18, 100673. DOI: 10.1016/j.enmm.2022.100673.Search in Google Scholar

Brisebois, P. & Siaj, M. (2020). Harvesting graphene oxide – years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C, 8(5), 1517–1547. DOI: 10.1039/c9tc03251g.Search in Google Scholar

Khan, F., Khan, M.S., Kamal, S., Arshad, M., Ahmad, S. & Nami, S.A. (2020). Recent advances in graphene oxide and reduced graphene oxide based nanocomposites for the photo-degradation of dyes. J. Mater. Chem. C, 8(45), 15940–15955. DOI: 10.1039/d0tc03684f.Search in Google Scholar

Smith, A.T., LaChance, A.M., Zeng, S., Liu, B. & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 1(1), 31–47. DOI: 10.1016/j.nanoms.2019.02.004.Search in Google Scholar

Liu, T., Liu, X., Graham, N., Yu, W. & Sun, K. (2020). Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. J. Membrane Sci. 593, 117431. DOI: 10.1016/j.memsci.2019.117431.Search in Google Scholar

Fan, X., Cai, C., Gao, J., Han, X. & Li, J. (2020). Hydrothermal reduced graphene oxide membranes for dyes removing. Separ. Purific. Technol. 241, 116730. DOI: 10.1016/j. seppur.2020.116730.Search in Google Scholar

Ahmad, S.Z.N., Salleh, W.N.W., Ismail, A.F., Yusof, N., Yusop, M.Z.M. & Aziz, F. (2020). Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere, 248, 126008. DOI: 10.1016/j.chemosphere.2020.126008.Search in Google Scholar

Feng, J., Ye, Y., Xiao, M., Wu, G. & Ke, Y. (2020). Synthetic routes of the reduced graphene oxide. Chemical Papers 74, 3767–3783. DOI: 10.1007/s11696-020-01196-0.Search in Google Scholar

Abu-Nada, A., McKay, G. & Abdala, A. (2020). Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater. Nanomaterials, 10(3), 595. DOI: 10.3390/nano10030595.Search in Google Scholar

Thakur, K. & Kandasubramanian, B. (2019). Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants: A review. J. Chem. & Engin. Data, 64(3), 833–867. DOI: 10.1021/acs.jced.8b01057.Search in Google Scholar

Singh, S., Anil, A.G., Khasnabis, S., Kumar, V., Nath, B., Adiga, V., ……Singh, J. (2022). Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics. Environ. Res. 203, 111891. DOI: 10.1016/j.envres.2021.111891.Search in Google Scholar

Kaur, N., Kaur, M. & Singh, D. (2019). Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies. Environ. Pol. 253, 111–119. DOI: 10.1016/j.envpol.2019.05.145.Search in Google Scholar

Choi, J., Lingamdinne, L.P., Yang, J., Chang, Y. & Koduru, J.R. (2020). Fabrication of chitosan/graphene oxide-gadolinium nanorods as a novel nanocomposite for arsenic removal from aqueous solutions. J. Molec. Liquids, 320, 114410. DOI: 10.1016/j.molliq.2020.114410.Search in Google Scholar

Nguyen, H.T.V., Ngo, T.H.A., Dinh, K., Nguyen, M.N., Dang, N.T.T., Nguyen, T.T., ….. Vu, T.A. (2019). Preparation and characterization of a hydrophilic polysulfone membrane using graphene oxide. J. Chem. 2019, 1–10. DOI: 10.1155/2019/3164373.Search in Google Scholar

Liu, J., Lu, Z., Chen, Z., Rimoldi, M., Howarth, A.J., Chen, H., Hupp, J.T. (2021). Ammonia Capture within Zirconium Metal–Organic Frameworks: Reversible and Irreversible Uptake. ACS Appl. Mater. & Interf. 13(17), 20081–20093. DOI: 10.1021/acsami.1c02370.Search in Google Scholar

Sali, S., Mackey, H.R. & Abdala, A. (2019). Effect of Graphene Oxide Synthesis Method on properties and performance of Polysulfone-Graphene oxide mixed matrix membranes. Nanomater. 9(5), 769. DOI: 10.3390/nano9050769.Search in Google Scholar

Adetayo, A. & Runsewe, D. (2019). Synthesis and Fabrication of graphene and graphene Oxide: a review. Open J. Comp. Mater. 09(02), 207–229. DOI: 10.4236/ojcm.2019.92012.Search in Google Scholar

Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S. & Atieh, M.A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics Internat. 45(11), 14439–14448. DOI: 10.1016/j.ceramint.2019.04.165.Search in Google Scholar

Alkhouzaam, A., Qiblawey, H., Khraisheh, M., Atieh, M.A. & Al-Ghouti, M.A. (2020). Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceramics Internat. 46(15), 23997–24007. DOI: 10.1016/j. ceramint.2020.06.177.Search in Google Scholar

Feicht, P., Biskupek, J., Gorelik, T.E., Renner, J., Halbig, C.E., Maranska, M., Puchtler, F., Kaiser, U., Eigler, S. (2019). Brodie’s or Hummers’ method: oxidation conditions determine the structure of graphene oxide. Chem. – a Europ. J. 25(38), 8955–8959. DOI: 10.1002/chem.201901499.Search in Google Scholar

Rasheed, R.T., Mansoor H.S., Al-Shaikhly R.R., Abdullah T.A., Salman A.D. & Juzsakova T. (2020), “Synthesis and catalytic activity studies of α-MnO2 nanorodes, rutile TiO2 and its composite prepared by hydrothermal method. In AIP Conference Proceedings 2213(1), 020122. DOI: 10.1063/5.0000228.Search in Google Scholar

Lingamdinne, L.P., Koduru, J.R. & Karri, R.R. (2019). A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J. Environ. Manag. 231, 622–634. DOI: 10.1016/j. jenvman.2018.10.063.Search in Google Scholar

Jose, P.P.A., Kala, M.S., Kalarikkal, N. & Thomas, S. (2018). Silver-attached reduced graphene oxide nanocomposite as an eco-friendly photocatalyst for organic dye degradation. Res. on Chem. Intermed. 44(9), 5597–5621. DOI: 10.1007/s11164-018-3443-8.Search in Google Scholar

Yuan, R., Wen, H., Zeng, L., Li, X., Liu, X. & Zhang, C. (2021). Supercritical CO2 assisted solvothermal preparation of COO/Graphene nanocomposites for high performance Lithium-Ion batteries. Nanomaterials, 11(3), 694. DOI: 10.3390/nano11030694.Search in Google Scholar

Chin, S.J., Doherty, M., Vempati, S., Dawson, P., Byrne, C., Meenan, B.J., . . . McNally, T. (2019). Solvothermal synthesis of graphene oxide and its composites with poly(ε-caprolactone). Nanoscale, 11(40), 18672–18682. DOI: 10.1039/c9nr04202d.Search in Google Scholar

Pu, S., Xue, S., Zeng, Y., Hou, Y., Zhu, R., & Chu, W. (2018). In situ co-precipitation preparation of a superparamagnetic graphene oxide/Fe3O4 nanocomposite as an adsorbent for wastewater purification: synthesis, characterization, kinetics, and isotherm studies. Environ. Sci. Pollut. Res. 25(18), 17310–17320. DOI: 10.1007/s11356-018-1872-y.Search in Google Scholar

Hao, X., Zhu, M., Dong, L.L., Zhang, W., Sun, X., Wang, Y., Yong Qing Fu, Zhang, Y. (2022). In-situ synthesis of reduced graphene oxide/aluminium oxide nanopowders for reinforcing Ti-6Al-4V composites. J. Alloys Compounds, 905, 164198. DOI: 10.1016/j.jallcom.2022.164198.Search in Google Scholar

Joya-Cárdenas, D.R., Rodríguez-Caicedo, J.P., Gallegos-Muñoz, A., Zanor, G.A., Caycedo-García, M.S., Damián, C. & Saldaña-Robles, A. (2022). Graphene-Based Adsorbents for arsenic, fluoride, and chromium adsorption: Synthesis Methods Review. Nanomaterials, 12(22), 3942. DOI: 10.3390/nano12223942.Search in Google Scholar

Rasuli, H. & Rasuli, R. (2023). Nanoparticle-decorated graphene/graphene oxide: synthesis, properties and applications. J. Mat. Sci. 58(7), 2971–2992. DOI: 10.1007/s10853-023-08183-2.Search in Google Scholar

Suneetha, R.B., Selvi, P.K. & Vedhi, C. (2019). Synthesis, structural and electrochemical characterization of Zn doped iron oxide/grapheneoxide/chitosan nanocomposite for super-capacitor application. Vacuum, 164, 396–404. DOI: 10.1016/j. vacuum.2019.03.051.Search in Google Scholar

Chai, W.S., Cheun, J.Y., Kumar, P., Mubashir, M., Majeed, Z., Banat, F., Ho, S.H., Show, P.L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Cleaner Prod. 296, 126589. DOI: 10.1016/j.jclepro.2021.126589.Search in Google Scholar

Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. & Hussain, M. (2021). A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ. Sci. Pollut. Res. 28(8), 9050–9066.DOI: 10.1007/s11356-021-12395-x.Search in Google Scholar

Lentz, L., Mayer, D.A., Dogenski, M. & Ferreira, S.R. (2022). Hybrid aerogels of sodium alginate/graphene oxide as efficient adsorbents for wastewater treatment. Mater. Chem. Phys. 283, 125981. DOI: 10.1016/j.matchemphys.2022.125981.Search in Google Scholar

Bi, C., Zhang, C., Ma, F., Zhang, X., Yang, M., Nian, J., . . . Lv, Q. (2021). Growth of a mesoporous Zr-MOF on functionalized graphene oxide as an efficient adsorbent for recovering uranium (VI) from wastewater. Micro. Meso. Mat. 323, 111223. DOI: 10.1016/j.micromeso.2021.111223.Search in Google Scholar

Verma, M., Tyagi, I., Kumar, V., Goel, S., Vaya, D. & Kim, H. (2021). Fabrication of GO–MnO2 nanocomposite using hydrothermal process for cationic and anionic dyes adsorption: Kinetics, isotherm, and reusability. J. Environ. Chem. Engin. 9(5), 106045. DOI: 10.1016/j.jece.2021.106045.Search in Google Scholar

Verma, M., Kumar, A., Singh, K.P., Kumar, R., Kumar, V., Srivastava, C.M., Rawat, V., Rao, G., Kumari, S., Sharma, P., Kim, H. (2020). Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: One-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium. J. Molec. Liquids, 315, 113769. DOI: 10.1016/j. molliq.2020.113769.Search in Google Scholar

Chang, Z., Chen, Y., Tang, S., Yang, J., Chen, Y., Chen, S., . . . Yang, Z. (2020). Construction of chitosan/polyacrylate/graphene oxide composite physical hydrogel by semi-dissolution/acidification/sol-gel transition method and its simultaneous cationic and anionic dye adsorption properties. Carbohydr. Polym. 229, 115431. DOI: 10.1016/j.carbpol.2019.115431.Search in Google Scholar

Liu, L., Kong, G., Zhu, Y. & Che, C. (2021). Super-hydrophobic graphene aerogel beads for adsorption of oil and organic solvents via a convenient in situ sol-gel method. Colloid and Interf. Sci. Commun. 45, 100518. DOI: 10.1016/j. colcom.2021.100518.Search in Google Scholar

Cheng, Y., Yang, S. & E, T. (2021). Magnetic graphene oxide prepared via ammonia coprecipitation method: The effects of preserved functional groups on adsorption property. Inorganic Chem. Commun. 128, 108603. DOI: 10.1016/j. inoche.2021.108603.Search in Google Scholar

Dat, N.M., Long, P.N.B., Nhi, D.C.U., Minh, N.N., Duy, L.M., Quan, L.N., . . . Hieu, N.H. (2020). Synthesis of silver/reduced graphene oxide for antibacterial activity and catalytic reduction of organic dyes. Synthetic Metals, 260, 116260. DOI: 10.1016/j.synthmet.2019.116260.Search in Google Scholar

Naeem, H., Tofil, H.M., Soliman, M.Y., Hai, A., Zaidi, S.H.H., Kizilbash, N., . . . Siddiq, M. (2023). Reduced Graphene Oxide-Zinc Sulfide Nanocomposite Decorated with Silver Nanoparticles for Wastewater Treatment by Adsorption, Photocatalysis and Antimicrobial Action. Molecules, 28(3), 926. DOI: 10.3390/molecules28030926.Search in Google Scholar

Ahmed, M.A., Ahmed, M. & Mohamed, A.A. (2023). Synthesis, characterization and application of chitosan/graphene oxide/copper ferrite nanocomposite for the adsorptive removal of anionic and cationic dyes from wastewater. RSC Advances, 13(8), 5337–5352. DOI: 10.1039/d2ra07883j.Search in Google Scholar

Bukhari, A., Ijaz, I., Zain, H., Mehmood, U., Iqbal, M., Gilani, E. & Nazir, A. (2023). Introduction of CdO nanoparticles into graphene and graphene oxide nanosheets for increasing adsorption capacity of Cr from wastewater collected from petroleum refinery. Arabian J. Chem. 16(2), 104445. 10.1016/j. arabjc.2022.104445.Search in Google Scholar

Wang, J., Zhang, J., Han, L., Wang, J., Zhu, L. & Zeng, H. (2021). Graphene-based materials for adsorptive removal of pollutants from water and underlying interaction mechanism. Adv. Colloid Interf. Sci. 289, 102360. DOI: 10.1016/j. cis.2021.102360.Search in Google Scholar

Baig, N., Abdulazeez, I. & Aljundi, I.H. (2023). Low-pressure-driven special wettable graphene oxide-based membrane for efficient separation of water-in-oil emulsions. Npj Clean Water, 6(1). DOI: 10.1038/s41545-023-00252-y.Search in Google Scholar

Cao, K., Tian, Z., Zhang, X., Wang, Y., & Zhu, Q. (2022). Facile preparation of graphite nanosheets with excellent adsorption property. Research Square (Research Square). DOI: 10.21203/rs.3.rs-1936026/v1.Search in Google Scholar

Yasir, A.T., Benamor, A., Hawari, A.H., & Mahmoudi, E. (2023). Graphene oxide/chitosan doped polysulfone membrane for the treatment of industrial wastewater. Emergent Mat., 6(3), 899–910. DOI: 10.1007/s42247-023-00504-0.Search in Google Scholar

Das, L., Das, P., Bhowal, A. & Bhattachariee, C. (2020). Synthesis of hybrid hydrogel nano-polymer composite using Graphene oxide, Chitosan and PVA and its application in waste water treatment. Environ.Technol. Innovation, 18, 100664. DOI: 10.1016/j.eti.2020.100664.Search in Google Scholar

Kadhim, R.J., Al-Ani, F.H., Al-Shaeli, M., Alsalhy, Q.F., & Figoli, A. (2020). Removal of dyes using graphene oxide (GO) mixed matrix membranes. Membranes, 10(12), 366. DOI: 10.3390/membranes10120366.Search in Google Scholar

Kurniawan, T.A., Zhu, M., Fu, D., Yeap, S.K., Othman, M.H.D., Avtar, R., & Ouyang, T. (2020). Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. J. Environ. Manag. 270, 110871. DOI: 10.1016/j.jenvman.2020.110871.Search in Google Scholar

Mao, B., Boopathi, S., Thiruppathi, A.R., Wood, P.C. & Chen, A. (2020). Efficient dye removal and separation based on graphene oxide nanomaterials. New J. Chem. 44(11), 4519–4528. DOI: 10.1039/c9nj05895h.Search in Google Scholar

Zhu, M., Kurniawan, T.A., Song, F., Ouyang, T., Othman, M.H.D., Rezakazemi, M. & Shirazian, S. (2019). Applicability of BaTiO3/graphene oxide (GO) composite for enhanced photodegradation of methylene blue (MB) in synthetic wastewater under UV–vis irradiation. Environ. Pollut. 255, 113182. DOI: 10.1016/j.envpol.2019.113182.Search in Google Scholar

Abdi, G., Alizadeh, A., Amirian, J., Rezaei, S. & Sharma, G. (2019). Polyamine-modified magnetic graphene oxide surface: Feasible adsorbent for removal of dyes. J. Molec. Liquids, 289, 111118. DOI: 10.1016/j.molliq.2019.111118.Search in Google Scholar

Ain, Q., Farooq, M.U., & Jalees, M.I. (2020). Application of magnetic graphene oxide for water purification: heavy metals removal and disinfection. J. Water Proc. Engin. 33, 101044. DOI: 10.1016/j.jwpe.2019.101044.Search in Google Scholar

Le, T.T.N., Le, V.T., Dao, M.U., Nguyen, Q.V., Thu, V.T., Nguyen, M.Q., . . . Le, H.S. (2019). Preparation of magnetic graphene oxide/chitosan composite beads for effective removal of heavy metals and dyes from aqueous solutions. Chem. Engin. Commun. 206(10), 1337–1352. DOI: 10.1080/00986445.2018.1558215.Search in Google Scholar

Modi, A. & Bellare, J. (2020). Zeolitic imidazolate framework-67/carboxylated graphene oxide nanosheets incorporated polyethersulfone hollow fiber membranes for removal of toxic heavy metals from contaminated water. Separat. Purific. Technol. 249, 117160. DOI: 10.1016/j.seppur.2020.117160.Search in Google Scholar

Wu, Z., Deng, W., Zhou, W. & Luo, J. (2019). Novel magnetic polysaccharide/graphene oxide @Fe3O4 gel beads for adsorbing heavy metal ions. Carbohydr. Polym., 216, 119–128. DOI: 10.1016/j.carbpol.2019.04.020.Search in Google Scholar

Luo, Y., Huang, G., Li, Y., Yao, Y., Huang, J., Zhang, P., . . . Zhang, Z. (2023). Removal of pharmaceutical and personal care products (PPCPs) by MOF-derived carbons: A review. Sci. of the Total Environ. 857, 159279. DOI: 10.1016/j. scitotenv.2022.159279.Search in Google Scholar

Priya, A., Gnanasekaran, L., Rajendran, S., Qin, J., & Vasseghian, Y. (2022). Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment- A review. Environ. Res. 204, 112298. DOI: 10.1016/j.envres.2021.112298.Search in Google Scholar

Liu, T., Aniagor, C.O., Ejimofor, M., Menkiti, M.C., Tang, K.H.D., Chin, B.L.F., . . . Yap, P. (2023b). Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J. Molec. Liquids, 374, 121144. DOI: 10.1016/j.molliq.2022.121144.Search in Google Scholar

Zhu, X., He, M., Sun, Y., Xu, Z., Wan, Z., Hou, D., . . . Tsang, D.C. (2022). Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning. J. Hazard. Mat. 423, 127060. DOI: 10.1016/j.jhazmat.2021.127060.Search in Google Scholar

Zou, Y., Wang, W., Wang, H., Pan, C., Xu, J., Pozdnyakov, I. P., . . . Li, J. (2023). Interaction between graphene oxide and acetaminophen in water under simulated sunlight: Implications for environmental photochemistry of PPCPs. Water Res., 228, 119364. DOI: 10.1016/j.watres.2022.119364.Search in Google Scholar

Chaudhary, P., Ahamad, L., Chaudhary, A., Kumar, G., Chen, W. & Chen, S. (2023). Nanoparticle-mediated bioremediation as a powerful weapon in the removal of environmental pollutants. J. Environ. Chem. Engin. 11(2), 109591. DOI: 10.1016/j.jece.2023.109591.Search in Google Scholar

Jiang, L., Li, Y., Chen, Y., Yao, B., Chen, X., Yu, Y., . . . Zhou, Y. (2023). Pharmaceuticals and personal care products (PPCPs) in the aquatic environment: Biotoxicity, determination and electrochemical treatment. J. Cleaner Prod. 388, 135923. DOI: 10.1016/j.jclepro.2023.135923.Search in Google Scholar

Ghosh, T. (2023). Graphene Oxide–Agar–Agar Hydrogel for Efficient Removal of Methyl Orange from Water. In Springer Proc. in Mat. (9–19). DOI: 10.1007/978-981-99-1616-0_2.Search in Google Scholar

Du, F., Wenjing, A., Liu, F., Wu, B., Liu, Y., Zheng, W., . . . Wang, X. (2023). Hydrophilic chitosan/graphene oxide composite sponge for rapid hemostasis and non-rebleeding removal. Carbohydr. Polym. 316, 121058. DOI: 10.1016/j.carbpol.2023.121058.Search in Google Scholar

Sadeghi, M.H., Tofighy, M.A. & Mohammadi, T. (2020). One-dimensional graphene for efficient aqueous heavy metal adsorption: Rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs). Chemosphere, 253, 126647. DOI: 10.1016/j.chemosphere.2020.126647.Search in Google Scholar

Liu, D., Ding, C., Chi, F., Pan, N., Wen, J., Xiong, J. & Hu, S. (2019). Polymer brushes on graphene oxide for efficient adsorption of heavy metal ions from water. J. Appl. Polym. Sci. 136(43). DOI: 10.1002/app.48156.Search in Google Scholar

Arshad, F., Munirasu, S., Zain, J.H., Banat, F. & Haija, M.A. (2019). Polyethylenimine modified graphene oxide hydro-gel composite as an efficient adsorbent for heavy metal ions. Sep. Purif. Technol. 209, 870–880. DOI: 10.1016/j.seppur.2018.06.035.Search in Google Scholar

Jiang, H., Yang, Y., Lin, Z., Zhao, B., Wang, J., Xie, J. & Zhang, A. (2020). Preparation of a novel bio-adsorbent of sodium alginate grafted polyacrylamide/graphene oxide hydrogel for the adsorption of heavy metal ion. Sci. of the Total Environ. 744, 140653. DOI: 10.1016/j.scitotenv.2020.140653.Search in Google Scholar

Rodríguez, C., Tapia, C., Leiva-Aravena, E. & Leiva, E. (2020). Graphene Oxide–ZnO Nanocomposites for Removal of Aluminum and Copper Ions from Acid Mine Drainage Wastewater. Internat. J. Environ. Res. Public Health, 17(18), 6911. DOI: 10.3390/ijerph17186911.Search in Google Scholar

Dan, S., Bagheri, H., Shahidizadeh, A. & Hashemipour, H. (2023). Performance of graphene Oxide/SiO2 Nanocomposite-based: Antibacterial Activity, dye and heavy metal removal. Arabian J. Chem. 16(2), 104450. hDOI: 10.1016/j. arabjc.2022.104450.Search in Google Scholar

Saeedi-Jurkuyeh, A., Jafari, A.J., Kalantary, R.R. & Esrafili, A. (2020). A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions. Reactive and Func. Polym. 146, 104397. DOI: 10.1016/j. reactfunctpolym.2019.104397.Search in Google Scholar

Samuel, M.S., Bhattacharya, J., Raj, S., Needhidasan, S., Singh, H. & Singh, N.D.P. (2019). Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Internat. J. Biol. Macromol. 121, 285–292. DOI: 10.1016/j.ijbiomac.2018.09.170.Search in Google Scholar

El-Shafai, N.M., Abdelfatah, M., El-Khouly, M.E., El-Mehasseb, I.M., El-Shaer, A., Ramadan, M., . . . El-Kemary, M. (2020). Magnetite nano-spherical quantum dots decorated graphene oxide nano sheet (GO@Fe3O4): Electrochemical properties and applications for removal heavy metals, pesticide and solar cell. Appl. Surf. Sci. 506, 144896. DOI: 10.1016/j. apsusc.2019.144896.Search in Google Scholar

Suo, L., Dong, X., Gao, X., Xu, J., Huang, Z.D., Ye, J., . . . Zhao, L. (2019). Silica-coated magnetic graphene oxide nanocomposite based magnetic solid phase extraction of trace amounts of heavy metals in water samples prior to determination by inductively coupled plasma mass spectrometry. Microchem. J., 149, 104039. DOI: 10.1016/j.microc.2019.104039.Search in Google Scholar

Delhiraja, K., Vellingiri, K., Boukhvalov, D.W. & Philip, L. (2019). Development of highly water stable graphene Oxide-Based composites for the removal of pharmaceuticals and personal care products. Ind. Engin. Chem. Res. 58(8), 2899–2913. DOI: 10.1021/acs.iecr.8b02668.Search in Google Scholar

Liu, Y., Liu, R., Li, M., Yu, F. & He, C. (2019). Removal of pharmaceuticals by novel magnetic genipin-crosslinked chitosan/graphene oxide-SO3H composite. Carbohydr. Polym. 220, 141–148. DOI: 10.1016/j.carbpol.2019.05.060.Search in Google Scholar

Balasubramani, K., Sivarajasekar, N. & Naushad, M. (2020). Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: Equilibrium and statistical modelling. J. Molec. Liquids, 301, 112426. DOI: 10.1016/j.molliq.2019.112426.Search in Google Scholar

Abdullah, T.A., Juzsakova, T., Hafad, S. a. A., Rasheed, R.T., Aljammal, N., Mallah, M.A., . . . Aldulaimi, M. (2021). Functionalized multi-walled carbon nanotubes for oil spill cleanup from water. Clean Technol. Environ. Policy, 24(2), 519–541. DOI: 10.1007/s10098-021-02104-0.Search in Google Scholar

Abdullah, T.A., Nguyen, B., Juzsakova, T., Rasheed, R.T., Hafad, S. a. A., Mansoor, H.S., . . . Nguyen, V. (2021). Promotional effect of metal oxides (MxOy = TiO2, V2O5) on multi-walled carbon nanotubes (MWCNTs) for kerosene removal from contaminated water. Mat. Letters, 292, 129612. DOI: 10.1016/j.matlet.2021.129612.Search in Google Scholar

Ashraf, T., Alfryyan, N., Nasr, M., Ahmed, S.A. & Shaban, M. (2022). Removal of Scale-Forming Ions and Oil Traces from Oil Field Produced Water Using Graphene Oxide/Polyethersulfone and TiO2 Nanoribbons/Polyethersulfone Nanofiltration Membranes. Polymers, 14(13), 2572. DOI: 10.3390/polym14132572.Search in Google Scholar

Queiroz, R.N., De Figueiredo Neves, T., Da Silva, M.G.C., Mastelaro, V.R., Vieira, M.G.A. & Prediger, P. (2022). Comparative efficiency of polycyclic aromatic hydrocarbon removal by novel graphene oxide composites prepared from conventional and green synthesis. J. Cleaner Prod. 361, 132244. DOI: 10.1016/j.jclepro.2022.132244.Search in Google Scholar

Lawal, I.A., Lawal, M.M., Akpotu, S.O., Okoro, H.K., Klink, M.J. & Ndungu, P. (2020). Noncovalent Graphene Oxide Functionalized with Ionic Liquid: Theoretical, Isotherm, Kinetics, and Regeneration Studies on the Adsorption of Pharmaceuticals. Ind. Engin. Chem. Res. 59(11), 4945–4957. DOI: 10.1021/acs.iecr.9b06634.Search in Google Scholar

Hiew, B.Y.Z., Lee, L.Y., Lee, X.J., Gan, S., Thangalazhy-Gopakumar, S., Lim, S.S., . . . Yang, T.C. (2019). Adsorptive removal of diclofenac by graphene oxide: Optimization, equilibrium, kinetic and thermodynamic studies. J. Taiwan Instit. Chem. Engin. 98, 150–162. DOI: 10.1016/j.jtice.2018.07.034.Search in Google Scholar

Ninwiwek, N., Hongsawat, P., Punyapalakul, P. & Prarat, P. (2019). Removal of the antibiotic sulfamethoxazole from environmental water by mesoporous silica-magnetic graphene oxide nanocomposite technology: Adsorption characteristics, coadsorption and uptake mechanism. Colloids and Surf. A: Physicochem. Engin. Aspects, 580, 123716. DOI: 10.1016/j. colsurfa.2019.123716.Search in Google Scholar

Moreira, V.R., Lebron, Y. a. R., Da Silva, M.M., De Souza Santos, L.V., Jacob, R.S., De Vasconcelos, C.K.B. & Viana, M.M. (2020). Graphene oxide in the remediation of norfloxacin from aqueous matrix: simultaneous adsorption and degradation process. Environ. Sci. Pollut. Res. 27(27), 34513–34528. DOI: 10.1007/s11356-020-09656-6.Search in Google Scholar

Feng, X., Qiu, B., Dang, Y. & Sun, D. (2021). Enhanced adsorption of naproxen from aquatic environments by β-cyclodextrin-immobilized reduced graphene oxide. Chem. Engin. J. 412, 128710. DOI: 10.1016/j.cej.2021.128710.Search in Google Scholar

Javadian, S., Khalilifard, M. & Sadrpoor, S.M. (2019). Functionalized graphene oxide with core-shell of Fe3O4@ oliec acid nanospheres as a recyclable demulsifier for effective removal of emulsified oil from oily wastewater. J. Water Process Engin. 32, 100961. DOI: 10.1016/j.jwpe.2019.100961.Search in Google Scholar

Ferrero, G., Bock, M.S., Stenby, E.H., Hou, C. & Zhang, J. (2019). Reduced graphene oxide-coated microfibers for oil–water separation. Environ. Sci. Nano, 6(11), 3215–3224. DOI: 10.1039/c9en00549h.Search in Google Scholar

Hasanpour, M. (2023). Microcrystalline cellulose/graphene oxide aerogel for adsorption of cationic dye from aqueous solution. Mater. Sci. Technol. 1–13. DOI: 10.1080/02670836.2023.2216551.Search in Google Scholar

Kumari, H., Suman, S., Ranga, R., Chahal, S., Devi, S., . . . Parmar, R. (2023). A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water, Air, & Soil Pollut. 234(6). DOI: 10.1007/s11270-023-06359-9.Search in Google Scholar

Sharkawy, H.M.E., Shawky, A.M., Elshypany, R. & Selim, H. (2023). Efficient photocatalytic degradation of organic pollutants over TiO2 nanoparticles modified with nitrogen and MoS2 under visible light irradiation. Scientific Reports, 13(1). DOI: 10.1038/s41598-023-35265-7.Search in Google Scholar

Song, B., Tang, J., Zhen, M. & Liu, X. (2019). Influence of graphene oxide and biochar on anaerobic degradation of petroleum hydrocarbons. J. Bioengin. 128(1), 72–79. DOI: 10.1016/j.jbiosc.2019.01.006.Search in Google Scholar

Lin, Y., Zhong, L., Dou, S., Shao, Z., Liu, Q. & Zheng, Y. (2019). Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption. Environ. Internat. 128, 37–45. DOI: 10.1016/j. envint.2019.04.019.Search in Google Scholar

Liu, Q., Chen, J., Mei, T., He, X., Zhong, W., Liu, K., . . . Wang, D. (2018). A facile route to the production of polymeric nanofibrous aerogels for environmentally sustainable applications. J. Mat. Chem. A, Mat. for Energy and Sustainab. 6(8), 3692–3704. DOI: 10.1039/c7ta10107d.Search in Google Scholar

Feng, Y. & Yao, J. (2018). Design of Melamine Sponge-Based Three-Dimensional Porous Materials toward Applications. Ind. & Engin. Chem. Res. 57(22), 7322–7330. DOI: 10.1021/acs.iecr.8b01232.Search in Google Scholar

Wang, X., Liu, Z., Liu, X., Su, Y., Wang, J., Fan, T., . . . Long, Y. (2022). Ultralight and multifunctional PVDF/SiO2@ GO nanofibrous aerogel for efficient harsh environmental oil-water separation and crude oil absorption. Carbon, 193, 77–87. DOI: 10.1016/j.carbon.2022.03.028.Search in Google Scholar

Zhou, L. & Xu, Z. (2020). Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents. J. Hazard. Mat. 388, 121804. DOI: 10.1016/j.jhazmat.2019.121804.Search in Google Scholar

Xu, Z., Zhou, H., Tan, S., Jiang, X., Wu, W., Shi, J. & Chen, P. (2018). Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil–water separation. Beilstein J. Nanotech. 9, 508–519. DOI: 10.3762/bjnano.9.49.Search in Google Scholar

Mi, H., Jing, X., Huang, H., Peng, X. & Turng, L. (2018). Superhydrophobic Graphene/Cellulose/Silica Aerogel with Hierarchical Structure as Superabsorbers for High Efficiency Selective Oil Absorption and Recovery. Ind. & Engin. Chem. Res. 57(5), 1745–1755. DOI: 10.1021/acs.iecr.7b04388.Search in Google Scholar

Songsaeng, S., Thamyongkit, P. & Poompradub, S. (2019). Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills. J. Adv. Res. 20, 79–89. DOI: 10.1016/j.jare.2019.05.007.Search in Google Scholar

Obaid, H.S. & Halbus, A.F. (2023). Boosting iron oxide nanoparticles activity for dyes removal and antifungal applications by modifying its surface with polyelectrolytes. Chem. Phys. Impact, 6, 100244. DOI: 10.1016/j.chphi.2023.100244.Search in Google Scholar

Liu, P., Yan, T., Zhang, J., Shi, L. & Zhang, D. (2017). Separation and recovery of heavy metal ions and salt ions from wastewater by 3D graphene-based asymmetric electrodes via capacitive deionization. J. Mat. Chem.. A, Mat. for Energy and Sustainab. 5(28), 14748–14757. DOI: 10.1039/c7ta03515b.Search in Google Scholar

Liu, C., Wu, T., Hsu, P., Xie, J., Zhao, J., Li, K., . . . Cui, Y. (2019). Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode. ACS Nano, 13(6), 6431–6437. DOI: 10.1021/acsnano.8b09301.Search in Google Scholar

Mao, M., Yan, T., Shen, J., Zhang, J. & Zhang, D. (2021). Capacitive Removal of Heavy Metal Ions from Wastewater via an Electro-Adsorption and Electro-Reaction Coupling Process. Environ. Sci. & Technol. 55(5), 3333–3340. DOI: 10.1021/acs. est.0c07849.Search in Google Scholar

Gao, Y., Ren, X., Wu, J., Hayat, T., Alsaedi, A., Cheng, C. & Chen, C. (2018). Graphene oxide interactions with co-existing heavy metal cations: adsorption, colloidal properties and joint toxicity. Environ. Sci. Nano, 5(2), 362–371. DOI: 10.1039/c7en01012e.Search in Google Scholar

Liu, X., Ma, R., Wang, X., Ma, Y., Yang, Y., Li, Z., . . . Chen, J. (2019). Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 252, 62–73. DOI: 10.1016/j.envpol.2019.05.050.Search in Google Scholar

Varadwaj, G.B.B., Oyetade, O.A., Rana, S., Martincigh, B.S., Jonnalagadda, S.B., & Nyamori, V.O. (2017). Facile Synthesis of Three-Dimensional Mg–Al Layered Double Hydroxide/Partially Reduced Graphene Oxide Nanocomposites for the Effective Removal of Pb2+ from Aqueous Solution. ACS Appl. Mat. & Interf. 9(20), 17290–17305. DOI: 10.1021/acsami.6b16528.Search in Google Scholar

McCoy, T.M., Brown, P., Eastoe, J. & Tabor, R.F. (2015). Noncovalent magnetic control and reversible recovery of graphene oxide using iron oxide and magnetic surfactants. ACS Appl. Mat. & Interf. 7(3), 2124–2133. DOI: 10.1021/am508565d.Search in Google Scholar

Lee, V., Dennis, R.V., Schultz, B.J., Jaye, C., Fischer, D.A. & Banerjee, S. (2012). Soft X-ray Absorption Spectroscopy Studies of the Electronic Structure Recovery of Graphene Oxide upon Chemical Defunctionalization. J. Phys. Chem. C, 116(38), 20591–20599. DOI: 10.1021/jp306497f.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering