Open Access

CFD-DEM simulation of raceway size and mechanical characteristics of industrial scale blast furnace


Cite

Dong, X., Yu, A., Yagi, J.-I. & Zulli, P. (2007). Modelling of multiphase flow in a blast furnace: Recent developments and future work. ISIJ Int., 47, 1553–1570. DOI: 10.2355/isijinternational.47.1553. Search in Google Scholar

Hilton, J.E. & Cleary, P.W. (2012). Raceway formation in laterally gas-driven particle beds. Chem. Eng. Sci., 80, 306–316. DOI: 10.1016/j.ces.2012.06.044. Search in Google Scholar

Mathieson, J.G., Truelove, J.S. & Rogers, H. (2005). Toward an understanding of coal combustion in blast furnace tuyere injection. Fuel., 84, 1229–1237. DOI: 10.1016/j.fuel.2004.06.036. Search in Google Scholar

Hatano, M., Fukuda, M. & Takeuchi, M. (1976). An experimental study of the formation of raceway using a cold model. Trans. Iron Steel Inst. Jpn., 62, 25–32. DOI: 10.2355/tetsutohagane1955.62.1_25. Search in Google Scholar

Straka, R., Bernasowski, M., Klimczyk, A., Stachura, R. & Svyetlichnyy, D. (2020). Prediction of raceway shape in zinc blast furnace under the different blast parameters. Energy., 207. DOI: 10.1016/j.energy.2020.118153. Search in Google Scholar

Zhang, S., Wen, L., Bai, C., Chen, D. & Ouyang Q. (2006). The temperature field digitization of radiation images in blast furnace raceway. ISIJ Int., 46, 1410–1415. DOI: 10.2355/isijinternational.46.1410. Search in Google Scholar

Li, W., Zhuo, Y., Bao, J. & Shen, Y. (2021). A data-based soft-sensor approach to estimating raceway depth in ironmaking blast furnaces. Powder Technol., 390, 529–538. DOI: 10.1016/j. powtec.2021.05.072. Search in Google Scholar

Burgess, J.M. (1985). Fuel combustion in the blast furnace raceway zone. Prog. Energy Combust. Sci., 11, 6182. DOI: 10.1016/0360-1285(85)90013-9. Search in Google Scholar

Rajneesh, S. & Gupta, G.S. (2003). Importance of frictional forces on the formation of cavity in a packed bed under cross flow of gas. Powder Technol., 134, 72–85. DOI: 10.1016/s0032-5910(03)00136-0. Search in Google Scholar

Rajneesh, S., Sarkar, S. & Gupta, G.S. (2004). Prediction of raceway size in blast furnace from two dimensional experimental correlations. ISIJ Int., 44, 1298–1307. DOI: 10.2355/isijinternational.44.1298. Search in Google Scholar

Sastry, G.S.S.R.K., Gupta, G.S. & Lahiri, A.K. (2003). Cold model study of raceway under mixed particle conditions. Ironmaking & Steelmaking, 30, 61–65. DOI: 10.1179/030192303225009498. Search in Google Scholar

Zhou, D.E.P., Guo, S., Zeng, J., Xu, Q., Guo, L., Hou, Q. & Yu, A. (2022). Particle-scale study of coke combustion in the raceway of an ironmaking blast furnace. Fuel., 311. DOI: 10.1016/j.fuel.2021.122490. Search in Google Scholar

Wei, G., Zhang, H., An, X., & Hou, Q. (2022). Effect of particle shape on raceway size and pressure drop in a blast furnace: Experimental, numerical and theoretical analyses. Adv. Powder Technol., 33. DOI: 10.1016/j.apt.2022.103455. Search in Google Scholar

Li, X., Pang, K., Liang, C., Liu, D., Ma, J. & Chen, X. (2023). Particle attrition-breakage model for CFD-DEM simulation based on FRM and WPM: Application in blast furnace raceway. Powder Technol., 414. DOI: 10.1016/j.powtec.2022.118105. Search in Google Scholar

Wang, S. & Shen, Y. (2021). CFD-DEM modelling of raceway dynamics and coke combustion in an ironmaking blast furnace. Fuel, 302. DOI: 10.1016/j.fuel.2021.121167. Search in Google Scholar

Xu, D., Wang, S. & Shen, Y. (2023). An improved CFD-DEM modelling of raceway dynamics and coke combustion in an industrial-scale blast furnace. Chem. Eng. J., 455. DOI: 10.1016/j.cej.2022.140677. Search in Google Scholar

Cundall, P.A. & Strack, O.D.L. (1979). A discrete numerical model for granular assemblies. Géotechnique., 29, 47–65. DOI: 10.1680/geot.1979.29.1.47. Search in Google Scholar

Tsuji, Y., Kawaguchi, T. & Tanaka, T. (1993). Discrete particle simulation of two-dimensional fluidized bed. Powder Technol., 77, 79–87. DOI: 10.1016/0032-5910(93)85010-7. Search in Google Scholar

Ding, J. & Gidaspow, D. (1990). A bubbling fluidization model using kinetic theory of granular flow. AlChE J., 36, 523–538. DOI: 10.1002/aic.690360404. Search in Google Scholar

Garg, R., Galvin, J., Li, T. & Pannala, S. (2012). Documentation of open-source MFIX–DEM software for gas-solids flows. https://mfix.netl.doe.gov/doc/mfix-archive/mfix_current_documentation/dem_doc_2012-1.pdf Search in Google Scholar

Garg, R., Galvin, J., Li, T. & Pannala, S. (2012). Open-source MFIX-DEM software for gas–solids flows: Part I—Verification studies. Powder Technol., 220, 122–137. DOI: 10.1016/j. powtec.2011.09.019. Search in Google Scholar

van der Hoef, M.A., Ye, M., van Sint Annaland, M., Andrews, A.T., Sundaresan, S. & Kuipers, J.A.M. (2006). Multiscale modeling of gas-fluidized beds. Computational Fluid Dynamics. pp. 65–149. Search in Google Scholar

Hu, C., Luo, K., Wang, S., Sun, L. & Fan, J. (2019). Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study. Chem. Eng. Sci., 195, 693–706. DOI: 10.1016/j.ces.2018.10.015. Search in Google Scholar

Ku, X., Jin, H. & Lin, J. (2017). Comparison of gasification performances between raw and torrefied biomasses in an air-blown fluidized-bed gasifier. Chem. Eng. Sci., 168, 235–249. DOI: 10.1016/j.ces.2017.04.050. Search in Google Scholar

Wang, S., Luo, K. & Fan, J. (2020). CFD-DEM coupled with thermochemical sub-models for biomass gasification: Validation and sensitivity analysis. Chem. Eng. Sci., 217. DOI: 10.1016/j.ces.2020.115550. Search in Google Scholar

Hou, Q. & Yu, D.E.A. (2016). Discrete particle modeling of lateral jets into a packed bed and micromechanical analysis of the stability of raceways. AlChE J., 62, 4240–4250. DOI: 10.1002/aic.15358. Search in Google Scholar

Zhou, D.E.P., Guo, S., Zeng, J., Cui, J., Jiang, Y., Lu, Y., Jiang, Z., Li, Z. & Kuang, S. (2022). Particle shape effect on hydrodynamics and heat transfer in spouted bed: A CFD–DEM study. Particuology., 69, 10–21. DOI: 10.1016/j. partic.2021.11.009. Search in Google Scholar

Zhou, D.E.P., Ji, L., Cui, J., Xu, Q., Guo, L. & Yu, A. (2023). Particle-scale modelling of injected hydrogen and coke co-combustion in the raceway of an ironmaking blast furnace. Fuel., 336. DOI: 10.1016/j.fuel.2022.126778. Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering