Open Access

Theoretical investigations into the Spectrophotometrically Analyzed Niobium (V)-6-Chloro-3-hydroxy-7-methyl-2-(2’-thienyl)-4H-chromen-4-one Complex


Cite

Samsonov, G.V. (1968). Mechanical Properties of the Elements, Handbook of the physicochemical properties of the elements. New York, USA (pp. 387–446). Search in Google Scholar

Brian, K. (2002). Francium to Polonium: Atlantic Europe Publishing Company 40. Search in Google Scholar

Standard Atomic Weights: Niobium: CIAAW (2017). Search in Google Scholar

Peiniger, M. & Piel, H. (1985). A Superconducting Nb3Sn Coated Multicell Accelerating Cavity. IEEE Trans. Nucl. Sci. 32(5), 3610–3612. DOI: 10.1109/TNS.1985.4334443. Search in Google Scholar

Moura, H.R.S. & De Moura, L. (2007). Melting and purification of niobium. Proceedings of the International Niobium Workshop; Ganapati Rao Myneni, Tadeu Carneiro and Andrew Hutton. AIP Conference Proceedings 927, 30 October – 1 November 2006 (pp. 165–178). Araxa, Brazil. DOI: 10.1063/1.2770689. Search in Google Scholar

Nowak, I. & Ziolek, M. (1999). Niobium Compounds: Preparation, Characterization and Application in Heterogeneous Catalysis. Chem. Rev. 99, 3603–3624. DOI: 10.1021/cr9800208. Search in Google Scholar

Jahnke, L.P., Frank, R.G. & Redden, T.K. (1960). Columbium Alloys Today. Metal. Progr. 77, 69–74. URL: http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4183692. Search in Google Scholar

Nikulina, A.V. (2003). Zirconium-Niobium Alloys for Core Elements of Pressurized Water Reactors. Met. Sci. Heat Treat. 45, 287–292. DOI: 10.1023/A:1027388503837. Search in Google Scholar

Behera, A. (2022). Advanced Semiconductor/Conductor Materials. Adv. Mat. Springer, Cham. (pp. 557–596). DOI: 10.1007/978-3-030-80359-9_16. Search in Google Scholar

Vilaplana, J., Romaguera, C., Grimalt, F. & Cornellana, F. (1990). New trends in the use of metals in jewellery. Contact Derm. 25, 145–148. DOI: 10.1111/j.1600-0536.1991.tb01819.x. Search in Google Scholar

Vilaplana, J. & Romaguera, C. (1998). New developments in jewellery and dental materials. Contact Derm. 39, 55–57. DOI: 10.1111/j.1600-0536.1998.tb05832.x. Search in Google Scholar

Helaluddin, A.B.M., Khalid, R.S., Alaama, M. & Abbas, S.A. (2016). Main Analytical Techniques Used for Elemental Analysis inVarious Matrices. Trop. J. Pharm. Res. 15, 427–434. DOI: 10.4314/tjpr.v15i2.29. Search in Google Scholar

Dong, H.M. & Krivan, V. (2001). Direct solid-sampling electrothermal atomic absorption spectrometry methods for the determination of silicon in oxides of niobium, titanium and zirconium. Spectrochim. Acta. Part B. 56, 1645–1656. DOI: 10.1016/S0584-8547(01)00255-5. Search in Google Scholar

Lu, X.M. & Jin, D.L. (2009). Determination of niobium, silicon and phosphorus in ferrocolumbium by X-ray fluorescence spectrometry using sample preparation technique of centrifugal casting. Met. Anal. 29, 16–19. Search in Google Scholar

Petrova,, K.V., Baranovskaya V.B. & Korotkova, N.A. (2022). Direct inductively coupled plasma optical emission spectrometry for analysis of waste samarium-cobalt magnets. Arab. J. Chem. 15,103501. DOI: 10.1016/j.arabjc.2021.103501. Search in Google Scholar

Faix, W.G., Caletka, R. & Krivan, V. (1981). Radio-chemical multielement neutron activation analysis of high-purity niobium with short-lived indicator radionuclides. Anal. Chem. 53, 1594–1598. URL: https://eurekamag.com/research/087/033/087033214.php Search in Google Scholar

Ruiz, M.D.C., Rodriguez, M.H., Perino, E. & Olsina, R.A. (2002). Determination of Nb, Ta, Fe and Mn by X-ray fluorescence. Miner. Engg. 15, 373–375. DOI: 10.1016/S0892-6875(02)00039-0. Search in Google Scholar

Yi, W.J., Li, Y., Ran, G., Luo, H.Q. & Li, N.B. (2012). Determination of cadmium (II) by square wave anodic stripping voltammetry using bismuth–antimony film electrode. Sens. Actua. B: Chem. 166–167, 544–548. DOI: 10.1016/j.snb.2012.03.005. Search in Google Scholar

Hamed, M.M., Aglan, R.F. & El-Reefy, S.A. (2015). Normal and second derivative spectrophotometric determination of niobium using solid phase extraction technique. J Anal. Chem. 70, 1103–1110. DOI: 10.1134/S1061934815090075. Search in Google Scholar

Verdizade, N.A., Zalov, A.Z. & Suleymanova, G.S. (2017). Extraction-spectrophotometric determination of niobium and tantalum. Azerb. Khim Zh. 1, 72–76. URL: https://akj.az/uploads/journal/az/Verdizade.pdf Search in Google Scholar

Kutyrev, I.M., Nechepurenko, G.N. & Gaidukova, Yu. A. (2014). Extraction-spectrophotometric determination of niobium in magnetic alloys. Inorg. Mater. 50, 1405–1407. DOI: 10.1134/S0020168514140088. Search in Google Scholar

Agnihotri, N. & Agnihotri, R. (2012). Extractive spectrophotometric determination of niobium (V) using 3-hydroxy-2-(4’-methoxyphenyl)-4-oxo-4H-1-benzopyran as a complexing agent. Open Anal. Chem. J. 6, 39–44. DOI: 10.2174/1874065001206010039. Search in Google Scholar

Tarafder, P.K., Mondal, R.K. & Chattopadhaya, S. (2009). Extraction and sensitive spectrophotometric determination of niobium in silicate rocks and columbite-tantalite minerals. Chem. Anal. Warsaw. 54, 231–246. Search in Google Scholar

Agnihotri, N., Kamal, R. & Mehta, J.R. (2006). A highly selective spectrophotometric determination of niobium (V) using 3-hydroxy-2-[1’-phenyl-3’-(p-chlorophenyl)-4’-pyrazolyl]-4-oxo-4H-1-benzopyran as a complexing agent. Ann. Chim. (Rome, Italy). 96, 479–485. DOI: 10.1002/adic.200690048. Search in Google Scholar

Agnihotri, N. & Mehta, J.R. (2003). A highly selective spectrophotometric determination of niobium(V) using 6-chlo-ro-2-(2’-furyl)-3-hydroxy-4-oxo-4H-1-benzopyran as a complexing agent and chloroform as an extractant. J. Indian Chem. Soc. 80, 837–840. Search in Google Scholar

Uddin, M.A., Sutonu, B.H., Rub, M.A., Mahbub, S., Alotaibi, M.M., Asiri, A.M. & Kabir, M. (2022). UV-Visible spectroscopic and DFT studies of the binding of ciprofloxacin hydrochloride antibiotic drug with metal ions at numerous temperatures. Korean J. Chem. Eng. 39, 664–673. DOI: 10.1007/s11814-021-0924-z. Search in Google Scholar

Eroshin, A.V., Otlyotov, A.A., Kuzmin, I.A., Stuzhin, P.A. & Zhabanov, Y.A. (2022). DFT Study of the Molecular and Electronic Structure of Metal-Free Tetrabenzoporphyrin and Its Metal Complexes with Zn, Cd, Al, Ga, In. Int. J. Mol. Sci. 23, 939. DOI: 10.3390/ijms23020939. Search in Google Scholar

da Silva, T.U., da Silva, E.T., de Carvalho, Pougy, K., da Silva, Lima, C.H. & de Paula, Machado, S. (2022), Molecular modeling of indazole-3-carboxylic acid and its metal complexes (Zn, Ni, Co, Fe and Mn) as NO synthase inhibitors: DFT calculations, docking studies and molecular dynamics simulations. Inorg. Chem. Commun. 135, 109120. DOI: 10.1016/j. inoche.2021.109120. Search in Google Scholar

Waheeb, A.S., Kyhoiesh, H.A.K., Salman, A.W., Al-Adilee, K.J. & Kadhim, M.M. (2022). Metal Complexes of a new azo Ligand 2-[2’-(5-Nitrothiazolyl) azo]-4-methoxyphenol (NTAMP): Synthesis, Spectral Characterization and Theoretical Calculation. Inorg. Chem. Commun. 138, 109267. DOI: 10.1016/j.inoche.2022.109267. Search in Google Scholar

Zayed, E.M. & Mohamed, G. (2022). Synthesis, spectroscopic, DFT and docking studies, molecular structure of new Schiff base metal complexes. Egypt. J. Chem. 65, 633–644. DOI: 10.21608/ejchem.2021.83871.4116. Search in Google Scholar

Dege, N., Gökce, H., Doğan, O.E., Alpaslan, G., Ağar, T., Muthu, S. & Sert, Y. (2022). Quantum computational, Spectroscopic Investigations on N-(2-((2-chloro-4,5-dicyanophenyl)amino)ethyl)-4-methylbenzenesulfonamide by DFT/TD-DFT with Different Solvents, Molecular Docking and Drug-Likeness Researches. Coll. Sur: Physicochem. Engg. Aspect. 638, 128311. DOI: https://newsletter.x-mol.com/paper-Redirect/1482122577481203712. Search in Google Scholar

Kansız, S., Tolan A., Azam M., Dege N., Alam M., Sert Y., Al-Resayes S. & İçbudak H. (2022). Acesulfame based Co(II) complex: Synthesis, Structural investigations, Solvatochromism, Hirshfeld surface analysis and Molecular docking studies. Polyhedron. 218, 115762. DOI: 10.1016/j.poly.2022.115762. Search in Google Scholar

Mahmudov, I., Demir, Y., Sert, Y., Abdullayev, Y., Sujayev, A., Alwasel, S.H. & Gulcin, I. (2022). Synthesis and Inhibition Profiles of N-Benzyl- and N-Allyl Aniline Derivatives against Carbonic Anhydrase and Acetylcholinesterase – A Molecular Docking Study. Arab. J. Chem. 15, 103645. DOI: 10.1016/j.arabjc.2021.103645. Search in Google Scholar

Abdulridha, A., Albo Hay Allah, M.A., Makki, A.Q., Sert, Y., Salman, H. & Balakit, A. (2020). Corrosion inhibition of carbon steel in 1 M H2SO4 using new Azo Schiff compound: Electrochemical, gravimetric, adsorption, surface and DFT studies. J. Mol. Liq. 315, 113690. DOI: 10.1016/j. molliq.2020.113690. Search in Google Scholar

Algar J. & Flynn J.P. (1934). A new method for the synthesis of flavonols. Proc. Roy. Irish Acad. 42B, 1-7. Search in Google Scholar

Oyamada, T. (1934). A new general method for the synthesis of the derivatives of flavonol. J. Chem. Soc. Jpn. 55, 1256–1261. Search in Google Scholar

Kumar, A., Trivedi, M., Bhaskaran, S.R.K. & Singh, G. (2017). Synthetic, spectral and structural studies of a Schif base and its anticorrosive activity on mild steel in H2SO4. New J. Chem. 41, 8459–8468. DOI: 10.1039/C7NJ00896A. Search in Google Scholar

Muscat, J., Wander, A. & Harrison, N.M. (2001). On the prediction of band gaps from hybrid functional theory. Chem. Phys. Lett. 342, 397–401. DOI: 10.1016/S0009-2614(01)00616-9. Search in Google Scholar

Rienstra-Kiracofe, J.C., Barden, C.J., Brown, S.T. & Schaefer, H.F. (2001). Electron affinities of polycyclic aromatic hydrocarbons. J. Phys. Chem. 105, 524–528. DOI: 10.1021/jp003196y. Search in Google Scholar

Vektariene, A., Vektaris, G. & Svoboda, J. (2009). A theoretical approach to the nucleophilic behaviour of benzo fused thieno [3,2-b] furans using DFT and HF based reactivity descriptors. ARKIVOC. 7, 311–329. DOI: 10.3998/ark.5550190.0010.730. Search in Google Scholar

Arab, A., Gobal, F., Nahali, N. & Nahali, M. (2013). Electronic and structural properties of neutral, anionic and cationic RhxCu4–x (x= 0–4) small clusters: a DFT study. J. Clust. Sci. 24, 273–287. DOI: 10.1007%2Fs10876-013-0550-y. Search in Google Scholar

Arab, A. & Habibzadeh, M. (2016). Theoretical study of geometry, stability and properties of Al and Al Si nanoclusters. J. Nanostruct. Chem. 6, 111–119. DOI: 10.1007/s40097-015-0185-7. Search in Google Scholar

Ringbom, A. (1938). On the accuracy of colorimetric analytical methods. Anal. Chem. 115, 332–343. Search in Google Scholar

Job, P. (1928). Formation and stability of inorganic complexes in solution. Ann. di Chim. 9, 113–203. Search in Google Scholar

Vosburgh, W.C. & Cooper, G.R. (1941). Complex ions. I. The identification of complex ion in solution by spectrophotometric measurements. J. Am. Chem. Soc. 63, 437–442. DOI: 10.1021/ja01847a025. Search in Google Scholar

Yoe, J.H. & Jones, A.L. (1944). Colorimetric determination of iron with disodium-1,2-dihydroxybenzene-3,5-disulfonate. Ind. Eng. Chem. (Anal. Ed.). 16, 111–115. DOI: 10.1021/i560126a015. Search in Google Scholar

Tarasiewicz, H.P., Grudiniewska, A. & Tarasiewicz, M. (1977). An examination of chlorpromazine hydrochloride as indicator and spectrophotometric reagent for the determination of molybdenum (V). Anal. Chim. Acta. 94, 435–442. DOI: 10.1016/S0003-2670(01)84546-3. Search in Google Scholar

Verma, V.K., Guin, M., Solanki, B. & Singh, R.C. (2022). Molecular structure, HOMO and LUMO studies of Di (Hydro-xybenzyl) diselenide by quantum chemical investigations. Mater. Today Proc. 49, 3200–3204. DOI: 10.1016/j.matpr.2020.11.887. Search in Google Scholar

Üstün, E., Düşünceli, S.D. & Özdemir, I. (2019). Theoretical analysis of frontier orbitals, electronic transitions and global reactivity descriptors of M(CO)4L2 type metal carbonyl complexes: a DFT/TDDFT study. Struct. Chem. 30, 769–775. DOI: 10.1007/s11224-018-1231-0. Search in Google Scholar

Dhonchak, C., Agnihotri, N. & Kumar, A. (2021). Zirconium (IV)-3-hydroxy-2-tolyl-4H-chromen-4-one complex-the analytical and DFT studies. J. Mol. Model. 27, 336. DOI: 10.1007/s00894-021-04949-0. Search in Google Scholar

Sowrirajan, S., Elangovan, N., Ajithkumar, G. & Manoj, K.P. (2022). (E)-4-((4-Bromobenzylidene) Amino)-N-(Pyrimidin-2-yl) Benzene sulfonamide from 4-Bromobenzaldehyde and Sulfadiazine, Synthesis, Spectral (FTIR, UV–Vis), Computational (DFT, HOMO–LUMO, MEP, NBO, NPA, ELF, LOL, RDG) and Molecular Docking Studies. Polycyc. Arom. Compd. 1–16. DOI: 10.1080/10406638.2021.2006245. Search in Google Scholar

Luque, F.J., Lopez, J.M., Orozco, M., Muray, J.S. & Sen, K. (2000). Perspective on electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theor. Chem. Acc. 103, 343–345. DOI: 10.1007/s002149900013. Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering