Open Access

Numerical simulation of dense-phase pneumatic conveying in vertical pipe for gasifier


Cite

Klinzing, G.E. (2018). A review of pneumatic conveying status, advances and projections, Powder Technol. 333, 78–90. DOI: 10.1016/j.powtec.2018.04.012. Search in Google Scholar

Konrad, K. (1986). Dense-phase pneumatic conveying: a review, Powder Technol. 49(1), 1–35. DOI: 10.1016/0032-5910(86)85001-X. Search in Google Scholar

Rautiainen, A., Stewart, G., Poikolainen, V. & Sarkomaa, P. (1999). An experimental study of vertical pneumatic conveying, Powder Technol. 104, 139–150. DOI: 10.1016/S0032-5910(99)00056-X. Search in Google Scholar

Ratnayake, C. (2005). A comprehensive scaling up technique for pneumatic transport systems, Philosophical Thesis. Search in Google Scholar

Sun, S., Yuan, Z., Peng, Z., Moghtaderi, B. & Doroodchi, E. (2018). Computational investigation of particle flow characteristics in pressured dense phase pneumatic conveying systems, Powder Technol. 329, 241–251. DOI: 10.1016/j. powtec.2018.01.078. Search in Google Scholar

Liang, C., Grace, J.R., Shen, L., Yuan, G., Chen, X. & Zhao, C. (2015). Experimental investigation of pressure letdown flow characteristics in dense-phase pneumatic conveying at high pressure, Powder Technol. 277, 171–180. DOI: 10.1016/j. powtec.2015.03.002. Search in Google Scholar

Guo, X., Dai, Z., Gong, X. & Yu, Z. (2007). In Application of a capacitance solid mass flow meter in a dense phase pneumatic conveying system of pulverized coal, AIP Conference Proceedings. 320–327. DOI: 10.1063/1.2747448. Search in Google Scholar

Cong, X., Guo, X., Lu, H., Gong, X., Liu, K., Sun, X. & Xie, K. (2013). Flow patterns of pulverized coal pneumatic conveying and time-series analysis of pressure fluctuations, Chem. Eng. Sci. 101, 303–314. DOI: 10.1016/j.ces.2013.05.058. Search in Google Scholar

Wypych, P.W. & Yi, J. (2003). Minimum transport boundary for horizontal dense-phase pneumatic conveying of granular materials, Powder Technol. 129(1-3), 111–121. DOI: 10.1016/S0032-5910(02)00224-3. Search in Google Scholar

Setia, G., Mallick, S.S., Pan, R. & Wypych, P.W. (2015). Modeling minimum transport boundary for fluidized dense-phase pneumatic conveying systems, Powder Technol. 277, 244–251. DOI: 10.1016/j.powtec.2015.02.050. Search in Google Scholar

Taylor, T. (1998). Specific energy consumption and particle attrition in pneumatic conveying, Powder Technol. 95(1), 1–6. DOI: 10.1016/S0032-5910(97)03309-3. Search in Google Scholar

Hilton, J. & Cleary, P. (2011). The influence of particle shape on flow modes in pneumatic conveying, Chem. Eng. Sci. 66(3), 231–240. DOI: 10.1016/j.ces.2010.09.034. Search in Google Scholar

Jaworski, A.J. & Dyakowski, T. (2002). Investigations of flow instabilities within the dense pneumatic conveying system, Powder Technol. 125(2-3), 279–291. DOI: 10.1016/S0032-5910(01)00516-2. Search in Google Scholar

Rao, S.M., Zhu, K., Wang, C.H. & Sundaresan, S. (2001). Electrical capacitance tomography measurements on the pneumatic conveying of solids, Ind. & Eng. Chem. Res. 40(20), 4216–4226. DOI: 10.1021/ie0100028. Search in Google Scholar

Manjula, E., Ariyaratne, W.H., Ratnayake, C. & Melaaen, M.C. (2017). A review of CFD modelling studies on pneumatic conveying and challenges in modelling offshore drill cuttings transport, Powder Technol. 305, 782–793. DOI: 10.1016/j.powtec.2016.10.026. Search in Google Scholar

Kuang, S., Li, K. & Yu, A. (2019). CFD-DEM simulation of large-scale dilute-phase pneumatic conveying system, Ind. & Eng. Chem. Res. 59(9), 4150–4160. DOI: 10.1021/acs. iecr.9b03008. Search in Google Scholar

Tsuji, Y., Tanaka, T. & Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol. 71(3), 239–250. DOI: 10.1016/0032-5910(92)88030-L. Search in Google Scholar

Zhao, H. & Zhao, Y. (2020). CFD-DEM simulation of pneumatic conveying in a horizontal pipe, Powder Technol. 373, 58–72. DOI: 10.1016/j.powtec.2020.06.054. Search in Google Scholar

Cai, J., Xu, J., You, M., Liang, C., Liu, D., Ma, J. & Chen, X. (2022). Flow Characteristics and Pattern transition of Different Pipe Diameters in Pneumatic Conveying for Gasifier, Chem. Eng. Res. and Des. 189, 282–295. DOI: 10.1016/j. cherd.2022.11.038. Search in Google Scholar

Miao, Z., Kuang, S., Zughbi, H. & Yu, A. (2019). CFD simulation of dilute-phase pneumatic conveying of powders, Powder Technol. 349, 70–83. DOI: 10.1016/j.powtec.2019.03.031. Search in Google Scholar

Kuang, S., Yu, A. & Zou, Z. (2009). Computational study of flow regimes in vertical pneumatic conveying, Ind. & Eng. Chem. Res. 48(14), 6846–6858. DOI: 10.1021/ie900230s. Search in Google Scholar

Behera, N., Agarwal, V.K., Jones, M.G. & Williams, K.C. (2013). CFD modeling and analysis of dense phase pneumatic conveying of fine particles including particle size distribution, Powder Technol. 244, 30–37. DOI: 10.1016/j.powtec.2013.04.005. Search in Google Scholar

Pu, W., Zhao, C., Xiong, Y., Liang, C., Chen, X., Lu, P. & Fan, C. (2010). Numerical simulation on dense phase pneumatic conveying of pulverized coal in horizontal pipe at high pressure, Chem. Eng. Sci. 65(8), 2500–2512. DOI: 10.1016/j. ces.2009.12.025. Search in Google Scholar

Wen, C.Y. (1966). Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 100–111. DOI: 10.1234/12345678. Search in Google Scholar

Gidaspow, D., Bezburuah, R. & Ding, J. (1991). Hydrodynamics of circulating fluidized beds: kinetic theory approach; Illinois Inst. of Tech., Chicago, IL (United States), Dept. Chem. Engin. DOI: 10.1016/0032-5910(95)90055-1. Search in Google Scholar

Syamlal, M., Rogers, W. & O’Brien, T.J. (1993). MFIX Documentation: Volume 1. Theory Guide. National Technical Information Service. Springfield. VA. (DOE/METC 9411004. NTIS/DE 940087). Search in Google Scholar

Schaeffer, D.G. (1987). Instability in the evolution equations describing incompressible granular flow, J. Differ. Equations., 66(1), 19–50. DOI: 10.1016/0022-0396(87)90038-6. Search in Google Scholar

Lun, C., Savage, S.B., Jeffrey, D. & Chepurniy, N. (1984). Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field, J. Fluid. Mech. 140, 223–256. DOI: 10.1017/S0022112084000586. Search in Google Scholar

Johnson, P.C. & Jackson, R. (1987). Frictional-collisional constitutive relations for granular materials with application to plane shearing, J. Fluid. Mech. 176, 67–93. DOI: 10.1017/S0022112087000570. Search in Google Scholar

Murali, R., Shahriman, A.B., Razlan, Z.M., Ahmad, W.K.W., Azizul, A.I., Rojan, M.A., Ma’arof, M.I.N., Radzuan, M.A., Hassan, M.A.S.M. & Ibrahim, Z. (2021). Design optimization of exhaust manifold’s length for Spark Ignition (SI) engine through CFD analysis on low-end rpm using Taguchi’s Method, 2051 (2021), 012051. DOI: 10.1088/1742-6596/2051/1/012051. Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering