Open Access

Optimization of production process of epoxidized soybean oil with high oxygen content through response surface methodology


Cite

Sinadinović-Fišer, S., Janković, M. & Borota, O. (2012). Epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion exchange resin. Chem. Engin. Processing: Proc. Intensific., 62, 106–113. DOI: 10.1016/j.cep.2012.08.005. Open DOISearch in Google Scholar

Agu, C.M., Menkiti, M.C., Ekwe, E.B., Agulanna, A.C. (2020). Modeling and optimization of Terminalia catappa L. kernel oil extraction using response surface methodology and artificial neural network. Artific. Intellig. Agric., 4, 1–11. DOI: 10.1016/j.aiia.2020.01.001. Open DOISearch in Google Scholar

Chen, R., Zhang, C., Kessler, M.R. (2015). Polyols and polyurethanes prepared from epoxidized soybean oil ring-opened by polyhydroxy fatty acids with varying OH numbers. J. Appl. Polymer Sci., 132 (1). DOI: 10.1002/app.41213. Open DOISearch in Google Scholar

Mudhaffar, B., Salimon, J. (2010). Epoxidation of vegetable oils and fatty acids: catalysts, methods and advantages. J. Appl. Sci., 10 (15), 1545–1553. DOI: 10.3923/jas.2010.1545.1553. Open DOISearch in Google Scholar

Campanella, A., Baltanas, M.A. (2005). II.REACTIVITY WITH SOLVATED ACETIC AND PERACETIC ACIDS DEGRADATION OF THE OXIRANE RING OF EPOXIDIZED VEGETABLE OILS IN LIQUID-LIQUID SYSTEMS. Latin American Appl. Res., (3), 35. DOI: 10.1007/BF02706658. Open DOISearch in Google Scholar

Campanella, A., Fontanini, C., Baltanás, M.A. (2008). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Engin. J., 414(3), 466–475. DOI: 10.1016/j.cej.2008.07.016. Open DOISearch in Google Scholar

Cai, X., Zheng, J.L., Aguilera, A.F., Vernières-Hassimi, L., Tolvanen, P., Salmi, T., Leveneur, S. (2018). Influence of ring-opening reactions on the kinetics of cottonseed oil epoxidation. Internat. J. Chem. Kinetics, 50(10), 726–741. DOI: 10.1002/kin.21208. Open DOISearch in Google Scholar

Santacesaria, E., Turco, R., Russo, V., Tesser, R., Di Serio, M. (2020). Soybean Oil Epoxidation: Kinetics of the Epoxide Ring Opening Reactions. Processes, 8(9). DOI: 10.3390/pr8091134. Open DOISearch in Google Scholar

Nhan, N.P.T., Hien, T.T., Nhan, L.T.H., Anh, P.N.Q., Huy, L.T., Nguyen, T.C.T., Nguyen, D.T., Bach, L.G. (2018). Application of Response Surface Methodology to Optimize the Process of Saponification Reaction from Coconut Oil in Ben Tre – Vietnam. Solid State Phenomena, 279, 235–239. DOI: 10.4028/www.scientific.net/SSP.279.235. Open DOISearch in Google Scholar

Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. DOI: 10.1016/j.talanta.2008.05.019. Open DOISearch in Google Scholar

Ferreira, S.C., Bruns, R., Ferreira, H.S., Matos, G.D., David, J., Brandão, G., da Silva, E.P., Portugal, L., Dos Reis, P., Souza, A. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica chimica acta, 597 (2), 179–186. DOI: 10.1016/j.aca.2007.07.011. Open DOISearch in Google Scholar

Beg, S., Akhter, S. (2021). Box–Behnken designs and their applications in pharmaceutical product development. Design of Experiments for Pharmaceutical Product Development: Volume I: Basics and Fundamental Principles. 77–85. DOI: 10.1016/B978-0-12-815799-2.00003-4. Open DOISearch in Google Scholar

Box, G.E., Behnken, D.W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455–475. DOI: 10.2307/1266454. Open DOISearch in Google Scholar

Kenechi, N.O., Osarumehnsen, A.F., Linus, C. (2021) Optimization on Rubber Seed Oil Epoxidation Process Parameters Using Response Surface Methodology. Iranian J. Chem. & Chem. Engin. (5/6), 40. DOI: 10.30492/IJCCE.2020.40345. Open DOISearch in Google Scholar

Elkelawy, M., Bastawissi, H.A.-E., Esmaeil, K.K., Radwan, A.M., Panchal, H. Sadasivuni, K.K., Suresh, M., Israr, M. (2020). Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel, 266. DOI: 10.1016/j.fuel.2020.117072. Open DOISearch in Google Scholar

Paquot, C. (2013). Standard methods for the analysis of oils, fats and derivatives. Elsevier:. DOI: 10.1351/pac198153030783. Open DOISearch in Google Scholar

Musik, M., Milchert, E., Malarczyk-Matusiak, K. (2018). Technological parameters of epoxidation of sesame oil with performic acid. Polish J. Chem. Technol., 20(3), 53–59. DOI: 10.2478/pjct-2018-0038. Open DOISearch in Google Scholar

Campanella, A., Fontanini, C., Baltanas, M.A. (2008). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Engin. J., 144(3), 466–475. DOI: 10.1016/j.cej.2008.07.016. Open DOISearch in Google Scholar

Pongsumpun, P., Iwamoto, S., Siripatrawan, U. (2020). Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and anti-fungal activity. Ultrasonics sonochemistry, 60, 104604. DOI: 10.1016/j.ultsonch.2019.05.021. Open DOISearch in Google Scholar

Kousaalya, A.B., Beyene, S.D., Gopal, V., Ayalew, B., Pilla, S. (2018). Green epoxy synthesized from Perilla frutescens: A study on epoxidation and oxirane cleavage kinetics of high-linolenic oil. Industrial Crops and Products, 123, 25–34. DOI: 10.1016/j.indcrop.2018.06.047. Open DOISearch in Google Scholar

Zaher, F., El-Mallah, M., El-Hefnawy, M. (1989). Kinetics of oxirane cleavage in epoxidized soybean oil. J. Amer. Oil Chemists’ Soc., 66(5), 698–700. DOI: 10.1007/BF02669955. Open DOISearch in Google Scholar

Rice, F., Reiff, O.M. (2002). The thermal decomposition of hydrogen peroxide. J. Phys. Chem., 31 (9), 1352–1356. DOI: 10.1007/BF02669955. Open DOISearch in Google Scholar

Campanella, A., Baltanás, M. (2005). Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid systems: I. Hydrolysis and attack by H2O2. Latin Amer. Appl. Res., 35(3), 205–210. DOI: 10.1007/BF02706658. Open DOISearch in Google Scholar

Dong, C.-H., Xie, X.-Q., Wang, X.-L., Zhan, Y., Yao, Y.-J. (2009). Application of Box-Behnken design in optimisation for polysaccharides extraction from cultured mycelium of Cordyceps sinensis. Food Bioprod. Proc., 87(2), 139–144. DOI: 10.1016/j.fbp.2008.06.004. Open DOISearch in Google Scholar

Vianello, C., Piccolo, D., Lorenzetti, A., Salzano, E., Maschio, G. (2018). Study of soybean oil epoxidation: effects of sulfuric acid and the mixing program. Ind. & Engin. Chem. Res., 57(34), 11517–11525. DOI: 10.1021/acs.iecr.8b01109. Open DOISearch in Google Scholar

Farias, M. Martinelli, M. Bottega, D.P. (2010). Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex. Appl. Catal. A: General, 384 (1-2), 213–219. DOI: 10.1016/j.apcata.2010.06.038. Open DOISearch in Google Scholar

Janković, M., Sinadinović-Fišer, S., Govedarica, O., Pavličević, J., Budinski-Simendić, J. (2017). Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: pseudo-homogeneous model. Chem. Ind. Chem. Engin. Quarterly, 23(1), 97–111. DOI: 10.2298/CICEQ150702014J. Open DOISearch in Google Scholar

Turco, R., Vitiello, R., Russo, V., Tesser, R., Santacesaria, E., Di Serio, M. (2013). Selective epoxidation of soybean oil with performic acid catalyzed by acidic ionic exchange resins. Green Proc. Synthesis, 2(5), 427–434. DOI: 10.1515/gps-2013-0045. Open DOISearch in Google Scholar

Wu, J., Jiang, P., Qin, X., Ye, Y., Leng, Y. (2014). Peroxopolyoxotungsten-based Ionic Hybrid as a Highly Efficient Recyclable Catalyst for Epoxidation of Vegetable oil with H2O2. Bull. Korean Chem. Soc., 35(6), 1675–1680. DOI: 10.5012/bkcs.2014.35.6.1675. Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering