[
1. Broniarz-Press, L., Różański, J. & Różańska, S. (2007). Drag reduction effect in pipe systems and liquid falling film flow. Rev. Chem. Eng. 23,149–245. DOI: 10.1515/REVCE.2007.23.3-4.149.10.1515/REVCE.2007.23.3-4.149
]Search in Google Scholar
[
2. Ayegba, P.O., Edomwonyi-Otu, L.C., Yusuf, N. & Abubakar, A. (2021). A review of drag reduction by additives in curved pipes for single-phase liquid and two-phase flows. Eng. Rep. 3, e12294, DOI: 10.1002/eng2.12294.10.1002/eng2.12294
]Search in Google Scholar
[
3. Kobayashi, Y., Gomyo, H. & Arai, N. (2021). Molecular Insight into the Possible Mechanism of Drag Reduction of Surfactant Aqueous Solution in Pipe Flow. J. Mol. Sci. 22, 7573. DOI: 10.3390/ijms22147573.10.3390/ijms22147573830747734299196
]Search in Google Scholar
[
4. Gong, W., Shen, J., Dai, W., Li, K. & Gong, M. (2021). Research and applications of drag reduction in thermal equipment: A review. J. Heat. Mass Transf. 172, 121–152. DOI: 10.1016/j.ijheatmasstransfer.2021.121152.10.1016/j.ijheatmasstransfer.2021.121152
]Search in Google Scholar
[
5. Utomo, A., Riadi, A., Gunawan & Yanuar. (2021). Drag Reduction Using Additives in Smooth Circular Pipes Based on Experimental Approach. Processes. 9, 1596. DOI: 10.3390/pr9091596.10.3390/pr9091596
]Search in Google Scholar
[
6. Aguilar, G., Gasljevic, K. & Matthys, E.F. (2001). Asymptotes of maximum friction and heat transfer reductions for drag-reducing surfactant solutions. J. Heat Mass Transf. 44, 2835–2843. DOI: 10.1016/S0017-9310(00)00319-7.10.1016/S0017-9310(00)00319-7
]Search in Google Scholar
[
7. Usui, H., Itoh, T. & Saeki, T. (1998). On pipe diameter effects in surfactant drag-reducing pipe flow. Rheol. Acta. 37, 122–128. DOI: 10.1007/s003970050098.10.1007/s003970050098
]Search in Google Scholar
[
8. Wei, J.J., Kawaguchi, Y., Li, F.C., Yu, B., Zakin, J.L., Hart, D.J. & Zhang, Y. (2009). Drag-reducing and heat transfer characteristics of a novel zwitterionic surfactant solution. J. Heat Mass Transf. 52, 3547–3554. DOI: 10.1016/j.ijheatmasstransfer.2009.03.008.10.1016/j.ijheatmasstransfer.2009.03.008
]Search in Google Scholar
[
9. Zhang, Y., Schmidt, J., Talmon, Y. & Zakin, J.L. (2005). Co-solvent effects on drag reduction, rheological properties and micelle microstructures of cationic surfactants. J. Colloid Interface Sci. 286, 596–709. DOI: 10.1016/j.jcis.2005.01.055.10.1016/j.jcis.2005.01.05515897088
]Search in Google Scholar
[
10. Haruki, N., Inaba, H., Horibe, A. & Kodama, Y. (2009). Flow resistance and heat transfer characteristics of organic brine (Propylene Glycol) solution by adding flow drag reduction additive, Experimental Heat Transfer: J. Thermal Energy Generat., Transport, Storage, and Conversion 22, 283–299. DOI: 10.1080/08916150903099173.10.1080/08916150903099173
]Search in Google Scholar
[
11. Haruki, N., Inaba, H., Horibe, A. & Tanaka, S. (2006). Viscosity measurements of ethylene glycol solution with flow drag reduction additives. Heat Transfer-Asian Research. 35(8), 553–557. DOI: 10.1002/htj.20134.10.1002/htj.20134
]Search in Google Scholar
[
12. Różański, J. (2015). Pressure loss and convevtive heat transfer during the flow of surfactant solutions, Publishers of Poznan University of Technology, Poznań.
]Search in Google Scholar
[
13. Różańska, S. & Różański, J. (2020). Shear and extensional rheology of aqueous solutions of cocamidopropyl betaine and sodium dodecyl sulfate mixture. J. Dispers. Sci. Technol. 41, 733–741. DOI: 10.1080/01932691.2019.1611442.10.1080/01932691.2019.1611442
]Search in Google Scholar
[
14. Różański, J., Różańska, S., Mitkowski, P.T., Szaferski, W., Wagner, P. & Frankiewicz, A. (2021). Drag Reduction in the Flow of Aqueous Solutions of a Mixture of Cocamidopropyl Betaine and Cocamide DEA. Energies. 14, 2683-1-2683-15. DOI: 10.3390/en14092683.10.3390/en14092683
]Search in Google Scholar
[
15. Keera, S.T. & Deyab, M.A. (2005). Effect of some organic surfactants on the electrochemical behaviour of carbon steel in formation water. Colloids Surf. A: Physicochem. Eng. Asp. 266, 129–140. DOI: 10.1016/j. colsurfa.2005.05.069.
]Search in Google Scholar
[
16. Choi, U.S. & Kasza, K.E. (1981). Long Term Degradation of Dilute Polyacrylamide Solutions In Turbulent Flow Drag Reduction in Fluids Flows, 163–169.
]Search in Google Scholar
[
17. Metzner, A.B., & Reed, J.C. (1995). Flow of non-newtonian fluids – Correlation of the laminar, transition, and turbulent-flow regions. AJChE Journal. 1, 434–440. DOI: 10.1002/aic.690010409.10.1002/aic.690010409
]Search in Google Scholar
[
18. Myska, J. & Mik, V. (2004). Degradation of surfactant solutions by age and by flow singularity. Chem. Eng. Process. 43, 1495–1501. DOI: 10.1016/j.cep.2004.02.001.10.1016/j.cep.2004.02.001
]Search in Google Scholar
[
19. Tamano, S., Itoh, M., Kato, K. & Kokota, K. (2010). Turbulent drag reduction in nonionic surfactant solutions. Phys. Fluids. 22, 55102–55112. DOI: 10.1063/1.3407666.10.1063/1.3407666
]Search in Google Scholar