[
1. Hiromi Ariyaratne, W.K., Malagalage, A., Melaaen, M.C. & Tokheim L.A. (2014). CFD Modeling of Meat and Bone Meal Combustion in a Rotary Cement Kiln. Int. J. Model. Optim. 4, 263–272. DOI: 10.7763/ijmo.2014.v4.384.10.7763/IJMO.2014.V4.384
]Search in Google Scholar
[
2. Gulyurtlu, I., Boavida, D., Abelha, P., Lopes, M.H. & Cabrita I. (2005). Co-combustion of coal and meat and bone meal. Fuel 84, 2137–2148. DOI: 10.1016/j.fuel.2005.04.024.10.1016/j.fuel.2005.04.024
]Search in Google Scholar
[
3. Möller, K. (2015). Assessment of alternative phosphorus fertilizers for organic farming: meat and bone meal. Fact Sheet, Project: IMPROVE-P.
]Search in Google Scholar
[
4. Hendriks, W.H., Butts, C.A., Thomas, D.V., James, K.A.C., Morel, P.C.A. & Verstegen, M.V.A. (2002). Nutritional quality and variation of meat and bone meal. Asian-Australas J. Anim. Sci. 15, 1507–1516. DOI: 10.5713/ajas.2002.1507.10.5713/ajas.2002.1507
]Search in Google Scholar
[
5. Garcia, R.A., Rosentrater, K.A. & Flores, R.A. (2006). Characteristics of North American meat and bone meal relevant to the development of non-feed applications. Appl. Eng. Agric. 22, 729–736. DOI:10.13031/2013.21989.10.13031/2013.21989
]Search in Google Scholar
[
6. Kowalski, Z., Makara, A. (2021). The circular economy model used in the polish agro-food consortium: A case study. J. Clean. Prod. 284, 124751.10.1016/j.jclepro.2020.124751
]Search in Google Scholar
[
7. Stępień, A. & Wojtkowiak, K. (2015). Effect of meat and bone meal on the content of microelements in the soil and wheat grains and oilseed rape seeds. J. Elem. 20, 999–1010. DOI:10.5601/jelem.2015.20.1.811.10.5601/jelem.2015.20.1.811
]Search in Google Scholar
[
8. Chen, L., Kivelä, J., Helenius, J. & Kangas, A. (2011). Meat bone meal as fertiliser for barley and oat. Agr. Food Sci. 20, 235–244. DOI:10.2137/145960611797471552.10.2137/145960611797471552
]Search in Google Scholar
[
9. Kowalski, Z., Banach, M., Makara, A. (2021). Optimisation of the co-combustion of meat–bone meal and sewage sludge in terms of the quality produced ashes used as substitute of phosphorites. Environ Sci Pollut Res., 28(7), 8205–8214. DOI: 10.1007/s11356-020-11022-5.10.1007/s11356-020-11022-5785441233058077
]Search in Google Scholar
[
10. Kowalski, Z., Krupa-Żuczek, K. (2007). A model of the meat waste management. Pol. J. Chem. Technol. 9, 91–97. DOI: 10.2478/v10026-007-0098-410.2478/v10026-007-0098-4
]Search in Google Scholar
[
11. BREF (2005). Integrated Pollution Prevention and Control Reference Document on Best Available Techniques in the Slaughterhouses and Animal By-products Industries, EC, May 2005.
]Search in Google Scholar
[
12. Henze, M., Harremoës, P., Jansen, J. & Arvin, E. (1995). Wastewater Treatment-Biological and Chemical Processes. Springer-Verlag, Berlin Heidelberg, Germany.
]Search in Google Scholar
[
13. Makara, A., Kowalski, Z. & Saeid, A. (2015). Treatment of wastewater from production of meat-bone meal. Open Chem. 13,1275–1285. DOI: 10.1515/chem-2015-0145.10.1515/chem-2015-0145
]Search in Google Scholar
[
14. Johns, M.R. (1995). Developments in wastewater treatment in the meat processing industry: A review. Bioresource Technol. 54, 203–216. DOI: 10.1016/0960-8524(95)00140-9.10.1016/0960-8524(95)00140-9
]Search in Google Scholar
[
15. Tzoupanos, N.D. & Zouboulis, I. (2008). Coagulation--Flocculation Processes in Water/Wastewater Treatment : the Application of New Generation of Chemical Reagents. 6th IASME/WSEAS International Conference on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT (HTE’08), Rhodes, Greece, August 20-22, 2008.
]Search in Google Scholar
[
16. Teh, C.Y., Budiman, P.M., Shak, K.P.Y. & Wu, T.Y. (2016). Recent Advancement of Coagulation-Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 55, 4363–4389. DOI:10.1021/acs.iecr.5b04703.10.1021/acs.iecr.5b04703
]Search in Google Scholar
[
17. Song, Y.R. & Ma, J.W. (2013). Development of Fer-rate(VI) Salt as an Oxidant and Coagulant for Water and Wastewater Treatment. Appl. Mech. Mater. 361–363, 658–661. DOI: 10.4028/www.scientific.net/AMM.361-363.658.10.4028/www.scientific.net/AMM.361-363.658
]Search in Google Scholar
[
18. Bohdziewicz, J., Sroka, E. & Lobos, E. (2002). Application of the system which combines coagulation, activated sludge and reverse osmosis to the treatment of the wastewater produced by the meat industry. Desalination 144, 393–398. DOI: 10.1016/S0011-9164(02)00349-1.10.1016/S0011-9164(02)00349-1
]Search in Google Scholar
[
19. Bohdziewicz, J. & Sroka, E. (2005). Treatment of waste-water from the meat industry applying integrated membrane systems. Process Biochem. 40, 1339–1346. DOI: 10.1016/j. procbio.2004.06.023.
]Search in Google Scholar
[
20. Zueva, S.B., Ostrikov, A.N., Ilyina, N.M., De Michelis, I. & Vegliò, F. (2013). Coagulation Processes for Treatment of Waste Water from Meat Industry. Int. J. Waste Resources 3, 1–4. DOI: 10.4172/2252-5211.1000130.10.4172/2252-5211.1000130
]Search in Google Scholar
[
21. De Sena, R.F., Moreira, F.P.M. & José, H.J. (2008). Comparison of coagulants and coagulation aids for treatment of meat processing wastewater by column flotation. Biores. Technol. 99, 8221–8225. DOI: 10.1016/j.biortech.2008.03.014.10.1016/j.biortech.2008.03.01418442902
]Search in Google Scholar
[
22. Barbusiński, K. (2004). Intensification of wastewater treatment processes and stabilization of excessive sludge with the use of Fenton’s reagent. Silesian Technical University Silesia (in Polish).
]Search in Google Scholar
[
23. Aljuboury, D.A.D.A., Palaniandy, P., Abdul Aziz, H.B. & Feroz, S. (2014). A Review on the Fenton Process for Wastewater Treatment. J. Innov. Eng. 2, 4.
]Search in Google Scholar
[
24. Pawar, V. & Gawande S. (2015). An overview of the Fenton Process for Industrial Wastewater. J. Mech. Civ. Eng. 127–136.
]Search in Google Scholar
[
25. De Sena, R.F., Tambosi, J.L., Genena, A.K., De Moreira, F.P.M., Schröder, H.F. & José, H.J. (2009). Treatment of meat industry wastewater using dissolved air flotation and advanced oxidation processes monitored by GC–MS and LC–MS. Chem. Eng. J. 152, 151–157. DOI: 10.1016/j.cej.2009.04.021.10.1016/j.cej.2009.04.021
]Search in Google Scholar
[
26. Kwarciak-Kozłowska, A., Bohdziewicz, J., Mielczarek, K. & Krzywicka, A. (2011). Treatment of meat industry wastewater using coagulation and Fenton’s reagent. In. M. Kuczma (Ed.), Civil and Environmental Engineering Reports (CEER) (pp. 45–58). Zielona Góra: University Zielona Góra Edition Office.
]Search in Google Scholar
[
27. Kowalski, Z. (2019). Data of Farmutil Company (unpublished results, in Polish).
]Search in Google Scholar
[
28. Polish standard PN-ISO 6060:2006. Determination of chemical oxygen demand.
]Search in Google Scholar
[
29. Polish standard PN-EN ISO 7887:2002. Water quality. Testing and color determination.
]Search in Google Scholar
[
30. Polish standard PN-EN ISO 7027:2003. Water quality. Determination of turbidity.
]Search in Google Scholar
[
31. Polish Standard PN-EN ISO 6878:2004. Water quality. Determination of phosphorus Ammonium molybdate spec-trometric method.
]Search in Google Scholar
[
32. Polish Standard PN-EN 25663:2001. Determination of Kjeldahl nitrogen - the method after mineralization with selenium.
]Search in Google Scholar
[
33. Lenth, R.V. (2009, October). Response-Surface Methods in R, Using rsm. J. Stat. Softw. 32, 7. http://www.jstatsoft.org/.10.18637/jss.v032.i07
]Search in Google Scholar