Open Access

Synthesis, spectroscopic and thermogravimetric interpretations of UO2(II), ZrO(II), Zr(IV), VO(II) and V(V) ciprofloxacin antibiotic drug complexes


Cite

1. Shen, G.Z., Zou, G.H., Li, H.Y. & Zou, Y.L. (2019). Crystal structure and antibacterial activity of polyoxometalate cobalt-ciprofloxacin complex. J. Mol. Struct., 1198, 126831. DOI: 10.1016/j.molstruc.2019.07.078.10.1016/j.molstruc.2019.07.078Search in Google Scholar

2. Ma, J., Xiong, Y., Dai, X. & Yu, F. (2020). Coadsorption behavior and mechanism of ciprofloxacin and Cu(II) on graphene hydrogel wetted surface. Chem. Engineering J., 38015, 122387. DOI: 10.1016/j.cej.2019.122387.10.1016/j.cej.2019.122387Search in Google Scholar

3. George, J.M., Priyanka, R.N. & Mathew, B. (2020). Bimetallic Ag–Au nanoparticles as pH dependent dual sensing probe for Mn(II) ion and ciprofloxacin. Microchemical J., 155, 104686. DOI: 10.1016/j.microc.2020.104686.10.1016/j.microc.2020.104686Search in Google Scholar

4. Kumar, M., Sodhi, K.K., Singh, P., Agrawal, P.K. & Singh, D.K. (2019). Synthesis and characterization of antibiotic-metal complexes [FeCl3(L1)2H2O and Ni(NO3)2(L2)2H2O] and enhanced antibacterial activity. Environ. Nanotechnol., Monitoring & Management, 11, 100209. DOI: 10.1016/j.enmm.2019.100209.10.1016/j.enmm.2019.100209Search in Google Scholar

5. Drevenšek, P., Ulrih, N.P., Majerle, A. & Turel, I. (2006). Synthesis, characterization and DNA binding of magnesium–ciprofloxacin (cfH) complex [Mg(cf)2]·2.5H2O. J. Inorg. Biochem., 100, 1705–1713. DOI: 10.1016/j.jinorgbio.2006.06.003.10.1016/j.jinorgbio.2006.06.00316876251Search in Google Scholar

6. Turel, I., Šonc, A., Zupančič, M., Sepčić, K. & Turk, T. (2000). Biological activity of some magnesium(II) complexes of quinolones. Met. Based Drugs, 7, 101–104.10.1155/MBD.2000.101236520118475931Search in Google Scholar

7. Turel, I., Živec, P., Pevec, A., Tempelaar, S. & Psomas, G. (2008). Compounds of antibacterial agent ciprofloxacin and magnesium – crystal structures and molecular modeling calculations. Eur. J. Inorg. Chem., 23, 3718–3727. DOI: 10.1002/ejic.200800338.10.1002/ejic.200800338Search in Google Scholar

8. Al-Mustafa, J. & Taha, Z.A. (2011). Thermodynamics of the complexation of ciprofloxacin with calcium and magnesium perchlorate. Thermochim. Acta, 521, 9–13. DOI: 10.1016/j. tca.2011.03.033.Search in Google Scholar

9. Zupančič, M., Cerc Korošec, R. & Bukovec, P. (2001). The thermal-stability of ciprofloxacin complexes with magnesium (II), zinc (II) and cobalt (II). J. Therm. Anal. Calorim., 63, 787–795. DOI: 10.1023/a:1010100423044.10.1023/A:1010100423044Search in Google Scholar

10. Breda, S.A., Jimenez-Kairuz, A.F., Manzo, R.H. & Oli-vera, M.E. (2009). Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives. Int. J. Pharmaceut., 371, 106–113. DOI: 10.1016/j.ijpharm.2008.12.026.10.1016/j.ijpharm.2008.12.02619150493Search in Google Scholar

11. Shaikh, A.R., Giridhar, R., Megraud, F. & Yadav, M.R. (2009). Metalloantibiotics: Synthesis, characterization and antimicrobial evaluation of bismuth-fluoroquinolone complexes against Helicobacter Pylori. Acta Pharm., 59, 259–271. DOI: 10.2478/v10007-009-0027-6.10.2478/v10007-009-0027-619819823Search in Google Scholar

12. Turel, I., Golobič, A., Klavžar, A., Pihlar, B., Buglyó, P., Tolis, E., Rehder, D. & Sepčić, K. (2003). Interactions of oxovanadium(IV) and the quinolone family member—ciprofloxacin. J. Inorg. Biochem., 95, 199–207. DOI: 10.1016/S0162-0134(03)00123-5.10.1016/S0162-0134(03)00123-5Search in Google Scholar

13. Anacona, J.R. & Toledo, C. (2001). Synthesis and antibacterial activity of metal complexes of ciprofloxacin. Trans. Met. Chem., 26, 228–231. DOI: 10.1023/A:1007154817081.10.1023/A:1007154817081Search in Google Scholar

14. Psomas, G. (2008). Mononuclear metal complexes with ciprofloxacin: Synthesis, characterization and DNA-binding properties. J. Inorg. Biochem., 102, 1798–1811. DOI: 10.1016/j. jinorgbio.2008.05.012.Search in Google Scholar

15. Lopez-Gresa, M.P., Ortiz, R., Perelló, L., Latorre, J., Liu-González, M., García-Granda, S., Pérez-Priede, M. & Canton, E. (2002). Interaction of metal ions with two quinolone antimicrobial agents (cinoxacin and ciprofloxacin). Spectroscopic and X-ray structural characterization. Antibacterial studies. J. Inorg. Biochem., 92, 65–74. DOI: 10.1016/S0162-0134(02)00487-7.10.1016/S0162-0134(02)00487-7Search in Google Scholar

16. Zupančič, M., Cerc Korošec, R. & Bukovec, P. (2001). The thermal-stability of ciprofloxacin complexes with magnesium (II), zinc (II) and cobalt (II). J. Therm. Anal. Calorim., 63, 787–795. DOI: 10.1023/a:1010100423044.10.1023/A:1010100423044Search in Google Scholar

17. Hernandez-Gil, J., Perello, L., Ortiz, R., Alzuet, G., Gonzalez-Alvarez, M. & Liu-Gonzalez, M. (2009). Synthesis, structure and biological properties of several binary and ternary complexes of copper(II) with ciprofloxacin and 1,10 phenanthroline. Polyhedron, 28, 138–144. DOI: 10.1016/j.poly.2008.09.018.10.1016/j.poly.2008.09.018Search in Google Scholar

18. Wallis, S.C., Gahan, L.R., Charles, B.G., Hambley, T.W. & Duckworth, P.A. (1996). Copper (II) complexes of the fluoroquinolone antimicrobial ciprofloxacin: Synthesis, X-ray structural characterization and potentiometric study. J. Inorg. Biochem., 62, 1–16. DOI: 10.1016/0162-0134(95)00082-8.10.1016/0162-0134(95)00082-8Search in Google Scholar

19. Turel, I. & Leban, I. (1994). Bukovec, N. Synthesis, characterization, and crystal structure of a copper(II) complex with quinolone family member (ciprofloxacin): Bis(1)-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-piperazin-1ylquinoline-3-carbox-ylate) copper(II) chloride hexahydrate. J. Inorg. Biochem., 56, 273–282. DOI: 10.1016/0162-0134(94)85107-7.10.1016/0162-0134(94)85107-7Search in Google Scholar

20. Jiménez-Garrido, N., Perelló, L., Ortiz, R., Alzuet, G., González-Álvarez, M., Cantón, E., Liu-González, M., García Granda, S. & Pérez-Priede, M. (2005). Antibacterial studies, DNA oxidative cleavage, and crystal structures of Cu(II) and Co(II) complexes with two quinolone family members, ciprofloxacin and enoxacin. J. Inorg. Biochem., 99, 677–689. DOI: 10.1016/j.jinorgbio.2004.11.016.10.1016/j.jinorgbio.2004.11.01615708788Search in Google Scholar

21. Drevenšek, P., Zupančič, T., Pihlar, B., Jerala, R., Kolitsch, U., Plaper, A. & Turel, I. (2005). Mixed-valence Cu(II)/Cu(I) complex of quinolone ciprofloxacin isolated by a hydrothermal reaction in the presence of L-histidine: Comparison of biological activities of various copper–ciprofloxacin compounds. J. Inorg. Biochem., 99, 432–442. DOI: 10.1016/j.jinorgbio.2004.10.018.10.1016/j.jinorgbio.2004.10.01815621275Search in Google Scholar

22. Uivarosi, V., Badea, M., Olar, R., Marinescu, D., Nicolescu, T.O. & Nitulescu, G.M. (2011). Thermal degradation behavior of some ruthenium complexes with fluoroquinolone derivatives as potential antitumor agents. J. Therm. Anal. Calorim., 105, 645–650. DOI: 10.1007/s10973-010-1222-x.10.1007/s10973-010-1222-xSearch in Google Scholar

23. Tanimoto, M.K., Dias, K., Dovidauskas, S. & Nikolaou, S. (2012). Tuning the reaction products of ruthenium and ciprofloxacin for studies of DNA interactions. J. Coord Chem., 65, 1504–1517. DOI: 10.1080/00958972.2012.675434.10.1080/00958972.2012.675434Search in Google Scholar

24. Vieira, L.M.M., de Almeida, M.V., Lourenço, M.C.S., Bezerra, F.A.F.M. & Fontes, A.P.S. (2009). Synthesis and antitubercular activity of palladium and platinum complexes with fluoroquinolones. Eur. J. Med. Chem., 44, 4107–4111. DOI: 10.1016/j.ejmech.2009.05.001.10.1016/j.ejmech.2009.05.001Search in Google Scholar

25. Čurman, D., Živec, P., Leban, I., Turel, I., Polishchuk, A., Klika, K.D., Karaseva, E. & Karasev, V. (2008). Spectral properties of Eu(III) compound with antibacterial agent cip-rofloxacin (cfqH). Crystal structure of [Eu(cfqH)(cfq)(H2O)4] Cl2· 4.55H2O. Polyhedron, 27, 1489–1496. DOI: 10.1016/j. poly.2008.01.014.Search in Google Scholar

26. Geary, W.J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev., 7, 81. DOI: 10.1016/S0010-8545(00)80009-0.10.1016/S0010-8545(00)80009-0Search in Google Scholar

27. Nakamoto, K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry, 6th, John Wiley & Sons.10.1002/9780470405888Search in Google Scholar

28. Mansingh, P.S., Mohanty, R.R., Jena, S. & Dash, K.C. (1996). Synthesis and characterization of dioxouranium(VI) and thorium(IV) complexes of 2-(2’-hydroxyphenyl) benzimidazole and 2-(2-pyridyl benzoxazole. Ind. J. Chem. 35A, 479–482.Search in Google Scholar

29. Di Bella, S., Lanza, G., Gulino, A. & Fragalà, I. (1996). Electronic Structure of Bis(2,4-pentanedionato-O,O‘)oxovanadium(IV). A Photoelectron Spectroscopy, Electronic Spectroscopy, and ab Initio Molecular Orbital Study. Inorg. Chem., 35(13), 3885–3890. DOI: 10.1021/ic951457q.10.1021/ic951457q11666579Search in Google Scholar

30. Nakanishi, K. & Solomon, P.H. (1977). “Infrared Absorption Spectroscopy”, 2nd, Holden-Day, Inc., USA.Search in Google Scholar

31. Selbin, J. (1965). The Chemistry of Oxovanadium(IV). Chem. Rev., 65, 153–175. DOI: 10.1021/cr60234a001.10.1021/cr60234a001Search in Google Scholar

32. Srivastava, K.P., Jain, I.K. & Madhok, K.L. (1981). Vanadyl(V) chloride complexes of N-2 (4, 5, 6 monosubstituted pyridyl)-N′-substituted thio ureas. Proc. Indian Acad. Sci. (Chem. Sci.), 90(4), 309–316. DOI: 10.1007/BF02879405.10.1007/BF02879405Search in Google Scholar

33. Lever, A.B.P. (1984). Electronic spectra of dn ions Inorganic electronic spectroscopy. 2nd Ed.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering