Open Access

Permeability of N, P, K-fertilizer nutrient and water vapor through PLA, PLA/PS, and PLA/HA membranes


Cite

1. Watanabe, A., Takebayashi, Y., Ohtsubo, T. & Furukawa, M. (2009). Permeation of urea through various polyurethane membranes. Pest Managem. Sci. 65(11), 1233–1240. DOI: 10.1002/ps.1815.Open DOISearch in Google Scholar

2. Lan, R., Liu, Y., Wang, G., Wang, T., Kan, C. & Jin, Y. (2011). Experimental modeling of polymer latex spray coating for producing controlled-release urea. Particuology. 9(5), 510–516. DOI: 10.1016/j.partic.2011.01.004Open DOISearch in Google Scholar

3. Li, X., Bei, L., Sun, Z., Liu, K., Zhang, X. & Han, X. (2016). Permeation of fertilizer nutrients through polymer membrane: part I. Effect of P, K, and micronutrient fertilizer on permeability of urea. Asia-Pacific J. Chem. Engin. 11(2), 305–313. DOI: 10.1002/apj.1977.Open DOISearch in Google Scholar

4. Deng, X.N., Liu, K., Han, X., Hu, X. & Zheng, S. (2018). Permeability of p and k-nutrient through polystyrene membrane from aqueous solutions of urea + KH2PO4. Polish J. Chem. Technol. 20(4), 113–122. DOI: 10.2478/pjct-2018-0063.Open DOISearch in Google Scholar

5. Trinh, T.H., KuShaari, K., (2016). Dynamic of water absorption in controlled release fertilizer and its relationship with the release of nutrient. Proc. Engin. 148, 319–326. DOI: 10.1016/j.proeng.2016.06.444.Open DOISearch in Google Scholar

6. Hes, L., Bernardo, C.A. & Queirós, M.A., (1996). A new method for the determination of water-vapour permeability of polymer films based on the evaluation of the heat of evaporation. Polymer Testing. 15(2), 189–201. DOI: 10.1016/0142-9418(95)00031-3.Open DOISearch in Google Scholar

7. Sacher, E. (1983). Water permeation in polymer films. V. Parylene D. J. Appl. Polym. Sci. 28(4), 1535–1537. DOI: 10.1002/app.1983.070280425.Open DOISearch in Google Scholar

8. Wu, Y.L., Li, G.M., Li, J.F. & Liu, J. (2007). Transfer behavior of water vapor in polymer membranes and dehumidification of gases by membrane separation. Membrane Sci. & Technol. 03(27), 1–5. DOI : 10.16159/j.cnki.issn10078924.2007.03.001.Open DOISearch in Google Scholar

9. Zhu, W., Gora, L., Berg, A.W.C.V.D., Kapteijn, F., Jansen, J.C. & Moulijn, J.A. (2005). Water vapour separation from permanent gases by a zeolite-4A membrane. J. Membrane Sci. 253(1), 57–66. DOI: 10.1016/j.memsci.2004.12.039.Open DOISearch in Google Scholar

10. Gardebjer, S., Bergstrand, A. & Larsson, A., (2014). A mechanistic approach to explain the relation between increased dispersion of surface modified cellulose nanocrystals and final porosity in biodegradable films. Eur. Polym. J. 57(0), 160–168. DOI: 10.1016/j.eurpolymj.2014.05.020.Open DOISearch in Google Scholar

11. (a) Chen, X., He, Y., Shi, C., Fu, W., Bi, S., Wang, Z., Chen, L. (2014). Temperature- and pH-responsive membranes based on poly (vinylidene fluoride) functionalized with microgels. J. Membrane Sci. 469(11), 447–457. DOI: 10.1016/j.memsci.2014.07.005; (b) Frankenhaeuser, B., Moore, L.E. (1963). The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis. J. Physiol. 169(2), 431. DOI: 10.1113/jphysiol.1963.sp007269.Open DOISearch in Google Scholar

12. Dunkerley, E. & Schmidt, D. (2010). Effects of Composition, Orientation and Temperature on the O2 Permeability of Model Polymer/ClayNanocomposites. Macromolecules 43(24), 10536–10544. DOI: 10.1021/ma1018846.Open DOISearch in Google Scholar

13. Sun, Y.M., Huang, W.F. & Chang, C.C. (1999). Spray-coated and solution-cast ethylcellulose pseudolatex membranes. J. Membrane Sci. 157(2), 159–170. DOI: 10.1016/s0376-7388(98)00369-x.Open DOISearch in Google Scholar

14. Shaviv, A., Smadar, Raban, A. & Zaidel, E. (2003). Modeling controlled nutrient release from polymer coated fertilizers: Diffusion release from single granules. Environ. Sci. & Technol. 37, 2251. DOI: 10.1021/es011462v.Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering