Open Access

Construction of a reduced mechanism for diesel-natural gas -hydrogen using HCCI model with Direct Relation Graph and Sensitivity Analysis


Cite

1. Shudo, T. & Takahashi, T. (2004). Influence of Reformed Gas Composition on HCCI Combustion Engine System fueled with DME and H2-CO-CO2 which are Onboard-reformed from Methanol Utilizing Engine Exhaust Heat. JSME Internat. J. 70(698), 2663–2669. DOI: 10.1299/kikaib.70.2663.Open DOISearch in Google Scholar

2. Shudo, T. (2006). An HCCI combustion engine system using on-board reformed gases of methanol with waste heat recovery: ignition control by hydrogen. Int. J. Vehicle Des. 41(1–4), 206–226. DOI: 10.1504/IJVD.2006.009669.Open DOISearch in Google Scholar

3. Li, H.L. & Karim, G.A. (2005). Exhaust emissions from an SI engine operating on gaseous fuel mixtures containing hydrogen. Int. J. Hydrogen. Energ. 30(13–14), 1491–1499. DOI: 10.1016/j.ijhydene.2005.05.007.Open DOISearch in Google Scholar

4. Tutak, W., Jamrozik, A. & Grab-Rogalinski, K. (2020). Effect of natural gas enrichment with hydrogen on combustion process and emission characteristic of a dual fuel diesel engine. Int. J. Hydrogen. Energ. 1(119), 901–910. DOI: 10.1016/j.ijhydene.2020.01.080.Open DOISearch in Google Scholar

5. D’Andrea, T., Henshaw, P., Ting, D.S.K. (2004). The addition of hydrogen to a gasoline-fuelled SI engine. Int. J. Hydrogen Energ. 29(14), 1541–1552. DOI: 10.1016/j.ijhydene.2004.02.002.Open DOISearch in Google Scholar

6. Sobiesiak, A., Uykur, C., Ting, S.K. & Henshaw, P.F. (2002). Hydrogen/Oxygen Additives Influence on Premixed Iso-Octane/Air Flame. SAE Technical Papers, 2002. DOI: 10.4271/2002-01-1710.Open DOISearch in Google Scholar

7. Norbeck, J.M., Heffel, J.W., Durbin, T.D., Tabbara, B., Bowden, J.M. & Montano, M.C. (1996). Hydrogen fuel for surface transportation. Society of Automotive Engineers.10.4271/R-160Search in Google Scholar

8. Das, L.M. (1996). Hydrogen-oxygen reaction mechanism and its implication to hydrogen engine combustion. Int. J. Hydrogen. Energ. 21(8), 703–715. DOI: 10.1016/0360-3199(95)00138-7.Open DOISearch in Google Scholar

9. Feng, S.Q. (2017). Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine. Math. Probl. Eng. (21), 1–12. DOI: 10.1155/2017/6825079.Open DOISearch in Google Scholar

10. Lam, S.H. & Goussis, D.A. (1994). The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26(4), 461–486. DOI: 10.1002/kin.550260408.Open DOISearch in Google Scholar

11. Lu, T.F. & Law, C.K., (2008). A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry. Combust. Flame 154(4), 761–774. DOI: 10.1016/j.combustflame.2008.04.025.Open DOISearch in Google Scholar

12. Goussis, D.A. & Skevis, G. (2005). Nitrogen chemistry controlling steps in methane-air premixed flames. 3rd M.I.T. Conference on Computational Fluid and Solid Mechanics. 2005, 650–653.Search in Google Scholar

13. Wu, Z.Z., Qiao, X.Q. & Huang, Z.(2013). A criterion based on computational singular perturbation for the construction of reduced mechanism for dimethyl ether oxidation. J. Serb. Chem. Soc. 78(8), 1177–1188. DOI: 10.2298/JSC121122023W.Open DOISearch in Google Scholar

14. Treviño, C. & Méndez, F. (1991). Asymptotic analysis of the ignition of hydrogen by a hot plate in a boundary layer flow. Combust. Sci. Technol. 78(4–6), 197–216. DOI: 10.1080/00102209108951749.Open DOISearch in Google Scholar

15. Lu, T.F. & Law, C.K. (2006). Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane. Combust. Flame 144(1–2), 24–36. DOI: 10.1016/j.combustflame.2005.02.015.Open DOISearch in Google Scholar

16. Lu, T.F. & Law, C.K. (2005). A directed relation graph method for mechanism reduction. P Combust. Inst. 30(1), 1333–1341. DOI: 10.1016/j.proci.2004.08.145.Open DOISearch in Google Scholar

17. Luo, Z.Y., Lu, T.F. & Liu, J.W. (2011). A reduced mechanism for ethylene/methane mixtures with excessive NO enrichment. Combust. Flame 158(7), 1245–1254. DOI: 10.1016/j.combustflame.2010.12.009.Open DOISearch in Google Scholar

18. Sankaran, R., Hawk, S.E.R., Chen, J.H., Lu, T.F. & Law, C.K. (2007). Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc. Combust. Inst. 31(1), 1291–1298. DOI: 10.1016/j.proci.2006.08.025.Open DOISearch in Google Scholar

19. Luo, Z.Y., Som, S., Sarathy, S.M., Plomer, M., Pitz, W.J., Longman, D.E. & Lu, T.F. (2014). Development and validation of an n-dodecane skeletal mechanism for spray combustion applications. Combust. Theory Model. 18(2), 187–203. DOI: 10.1080/13647830.2013.872807.Open DOISearch in Google Scholar

20. Luo, Z.Y., Plomer, M., Lu, T.F., Som, S. & Longman, D.E. (2012). A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications. Combust. Theory Model. 99(2), 143–153. DOI: 10.1080/13647830.2011.631034.Open DOISearch in Google Scholar

21. Tosatto, L., Bennett, B.A.V. & Smooke, M.D. (2013). Comparison of different DRG-based methods for the skeletal reduction of JP-8 surrogate mechanisms. Combust. Flame 160(9), 1572–1582. DOI: 10.1016/j.combustflame.2013.03.024.Open DOISearch in Google Scholar

22. Lu, T.F. & Law, C.K. (2006). On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame 146(3), 472–483. DOI: 10.1016/j.combustflame.2006.04.017.Open DOISearch in Google Scholar

23. Ciezki, H.K. & Adomeit, G. (1993). Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions. Combust. Flame 93(4), 421–433. DOI: 10.1016/0010-2180(93)90142-P.Open DOISearch in Google Scholar

24. Kumar, K., Freeh, J.E., Sung, C.J. & Huang, Y. (2007). Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures. J. Propul. Power 23(2), 428–436. DOI: 10.2514/1.24391.Open DOISearch in Google Scholar

25. Kumar, R., Singhal, A., Katoch, A. & Kumar, S. (2020). Experimental Investigations on Laminar Burning Velocities of n-Heptane+ Air Mixtures at Higher Mixture Temperatures Using Externally Heated Diverging Channel Method. Energy Fuels 34(2), 2405–2416. DOI: 10.1021/acs.energyfuels.9b04249.Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering