Open Access

Comparative Study on NH3-SCR of High Entropy Mineral Catalytic Materials for Different Ratios of Rare Earth Concentrate/Rare Earth Tailing


Cite

1. Yi, T., Zhang, YB., Li, J.W. & Yang, X.G. (2016). Promoting effect of phosphoric acid on the selective catalytic reduction of nitrogen oxides by ruthenium dioxide catalyst[J]. Chinese J. Catal. 37(2), 300–307. DOI: 10.1016/S1872-2067(15)60977-9.10.1016/S1872-2067(15)60977-9Search in Google Scholar

2. Jia, Y.R., Jiang, X.Y. & Zheng, X.M. (2006). Characterization of CuO/Sn0.8Ti0.2O2 Catalyst and Its Activity for NO+CO[J]J. Inorg. Chem. 22(3), 525–532. DOI: 10.3321/j.issn:1001-4861.2006.03.027.Search in Google Scholar

3. Liu, F.D., Shan, W.P. & Shi, X.Y. (2012). Vanadium-based catalyst for selective catalytic reduction of NOx by NH3[J]. Progress 24(4), 445–455. DOI: CNKI:SUN:CHUA.0.2011-07-002.Search in Google Scholar

4. Wang, J.K. & Zhang, X.J. (2018). Research progress of selective catalytic reduction of NOx by Ce-based catalyst NH3[J]. Petrochem. Technol. 25(11), 270. DOI: CNKI:SUN:SHJS.0.2018-11-207.Search in Google Scholar

5. Zeng, X.R., Shen, Y.S. & Li, Y. (2011). Preparation and Selective Catalytic Reduction of NO[J]. Coal Technology. (06), 206–208. DOI: CNKI:SUN:MTJS.0.2011-06-089.Search in Google Scholar

6. Wang, X.B., Wu, S.G., Zou, W.X., Yu, S.H., Gui, K.T. & Lin, D. (2016). Selective catalytic reduction of NO by low temperature NH3 Fe-Mn/Al2O3 catalyst[J]. Chinese. J. Catal. 37(8), 1314–1323. DOI: 10.1016/S1872-2067(15)61115-9.10.1016/S1872-2067(15)61115-9Search in Google Scholar

7. Ma, J.W., Huang, B.C. & Yu, C.L. (2017). Effect of calcination temperature on the performance of Fe2O3/SAPO-34 catalyst for selective catalytic reduction of NO at low temperature NH3[J]. J. Environ. Sci. 37(9), 3297–3305. DOI: 10.13671/j.hjkxxb.2017.0100.Search in Google Scholar

8. Xiong, Z.B. & Lu, C.M. (2013). Modification of SCR Denitrification by Iron Oxide Composite Oxide Catalyst[J]. J. Fuel. Chem. 41(3), 361–367. DOI: 10.3969/j.issn.0253-2409.2013.03.016.Search in Google Scholar

9. Zhang, X.L., Wang, D. & Peng, J.S. (2015). Effect of calcination temperature on Mn-modified γ-Fe2O3 catalyst structure and low temperature SCR denitrification activity-[J]. J. Fuel Chem. 43(2), 243–250. DOI: 10.3969/j.issn.0253-2409.2015.02.016.Search in Google Scholar

10. Zhou, F., Xiong, Z.B. & Jin, J. (2018). Effect of calcination temperature on microstructure and denitrification activity of magnetic iron-titanium composite oxides[J]. Chem. Ind. Engin. Progress. (9), 3410–3415. DOI: 10.16085/j.issn.1000-6613.2017-2004.Search in Google Scholar

11. Chen, S.T., Wang, S.J. & Wu, F. (2015). Effect of Metal-lurgical Industry Waste Residue on Combustion and Denitration of Coal Combustion[J]. COALCONJECTION. 38(2), 83–87. DOI: CNKI:SUN:MTZH.0.2015-02-021.Search in Google Scholar

12. Liu, R., Yu, J. & Yang, C.Q. (2016). Study on performance of denitration catalyst based on metallurgical wasteresidue[J]. Chemica. Engin. Equipment. (3), 7–11. DOI: CNKI:SUN:FJHG.0.2016-03-002.Search in Google Scholar

13. Du, J., Li, G.Y. & Liu, R.L. (2012). Modification of manganese slag and preparation for SCR catalysts[J]. J. Environ. Engin. 006(010), 3762–3766. DOI: CNKI:SUN:HJJZ.0.2012-10-076.Search in Google Scholar

14. Xu, B., Chen, T.H., Liu, H.B., Zhu, C.Z., Chen, D., Zou, X.H. & Jiang, Y. (2016). Preparation of γ-Fe2O3 Catalyst by Heat Treatment of Natural Limonite for Selective Catalytic Reduction of NO by NH3[J]. Huan Jing Ke Xue. 37(7), 2807–2814. DOI: 10.13227/j.hjkx.2016.07.050.Search in Google Scholar

15. Wang, F., Yao, G.H. & Gui, K.T. (2009). Comparative Study on Selective Catalytic Reduction of Flue Gas Denitration Characteristics of Iron-Based Catalysts[J]. Proceedings of the CSEE. 29(29), 47–51. DOI: CNKI:SUN:ZGDC.0.2009-29-011.Search in Google Scholar

16. Wang, L.X., Zhao, P.Z. & Zhu, L. (2017). Mechanism of Alkali Metal (Potassium) PoisoningofIron-Cerium Composite Selective Catalytic Reduction Denitrification Catalyst[J]. Chem. Progress. 36(11), DOI: 10.16085/j.issn.1000-6613.2017-0264.Search in Google Scholar

17. Wu, D.W., Zhang, Q.L. & Lin, T. (2012). Effect of Fe on the Selective Catalytic Reduction of NO by NH3 at Low Temperature over Mn/CeO2-TiO2 Catalyst[J]. J. Inorganic Mater. 27(5), 495–500. DOI: 10.3724/SPJ.1077.2012.00495.10.3724/SP.J.1077.2012.00495Search in Google Scholar

18. Yan, C.Y., Lan, Li. & Chen, S.H. (2012). Preparation of high performance Ce_(0.5)Zr_(0.5)O_2 rare earth oxygen storage material and its supported single Pd three-way catalyst[J]. Chinese J. Catal. V33(2), 336–341. DOI: CNKI:SUN:CHUA.0.2012-02-021.10.3724/SP.J.1088.2012.10933Search in Google Scholar

19. Ma, Y., Li, N. & Wang, Q.W. (2016). Characteristics and research and development status of rareearth resourcesin Bayan Obo Mine[J]. Chinese J. Rare Earth. 34(6), 641–649. DOI: 10.11785/S1000-4343.20160601.Search in Google Scholar

20. Zheng, Q., Bian, X. & Wu, W.Y. (2017). Research on Process Mineralogy of Bayan Obo Rare Earth Tailings [J]. J. Nort. Univ. Natural. Sci. 38(8), 1107–1111. DOI: 10.12068/j. issn.1005-3026.2017.08.010.Search in Google Scholar

21. Jie, L., Meeprasert, J. & Namuangruk, S. (2017). Facet– Activity Relationship of TiO2 in Fe2O3/TiO2 Nanocatalysts for Selective Catalytic Reduction of NO with NH3: In Situ DRIFTs and DFT Studies[J]. J. Phys. Chem. C, 121(9). DOI: 10.1021/acs.jpcc.6b11175.10.1021/acs.jpcc.6b11175Search in Google Scholar

22. Cao, F., Su, S., Xiang, J., Xiang, J., Wang, P., Hu, S., Sun, L.S. & Zhang, AC. (2015). The activity and mechanism study of Fe-Mn-Ce/gamma-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel. 139, 232–239. DOI: 10.1016/j.fuel.2014.08.060.10.1016/j.fuel.2014.08.060Search in Google Scholar

23. YAO, Gui, H. & Wang, F. (2010). Low-Temperature De-NOx by Selective Catalytic Reduction BasedonIron-Based Catalysts[J]. Chem. Engin. & Technol. 33(7), 1093–1098. DOI: 10.1002/ceat.201000015.10.1002/ceat.201000015Search in Google Scholar

24. Li, Y., Shen, Y.S. & Zeng, X.R. (2011). Preparation and properties of Ti-Ce-Zr-Ox composited enitration catalyst[J]. Environ. Pollution Control. 33(1), 12–16. DOI: CNKI:SUN:HJWR.0.2011-01-003.Search in Google Scholar

25. Qi, C.X., Chai, Q.Q. & Wang, C.B. (2014). Optimization and Characterization of Preparation Conditions of Mn-Fe-Ce/ TiO2 Low Temperature Denitration Catalyst[J]. Chem. Industry Engin. Progress. 33(4), 921–924. DOI: 10.3969/j.issn.1000-6613.2014.04.022.Search in Google Scholar

26. Li, K., Haneda, M. & Ozawa, M. (2013). Oxygen release–absorption properties and structural stability of Ce0.8Fe0.2O2–x[J]. J. Mater. Sci. 48(17), 5733–5743. DOI: 10.1007/s10853-013-7365-y.10.1007/s10853-013-7365-ySearch in Google Scholar

27. Yan, D.J. (2015). Effects of preparation conditions on the structure and properties of low temperature NH3-SCR denitration catalyst Mn-Ce/TiO2[J]. Chinese J. Environ. Sci. 35(6), 1697–1702. DOI: 10.13671/j.hjkxxb.2014.0954.Search in Google Scholar

28. Mao, X.B., Du, Q.L. & Yang, D.D. (2014). Preparation of Ceria-based Catalyst and Its Application in Purification of Automobile Exhaust[J]. Sci. Technol. Outlook. (7). DOI: 10.3969/j.issn.1672-8289.2014.07.111.Search in Google Scholar

29. Trudeau, M.L., Tschöpe, A. & Ying, J.Y. (2004). XPS investigation of surface oxidation and reduction in nanocrystalline CexLa1–xO2–y[J]. Surf. Interf. Anal. 23(4) 219–226. DOI: 10.1002/sia.740230405.10.1002/sia.740230405Search in Google Scholar

30. Fan, J., Wu, X.D. & Liang, Q. (2016). Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides: Effect on the OSC performance[J]. Appl. Catal. B: Environ. 81(1), 38–48. DOI: 10.1016/j.apcatb.2007.11.022.10.1016/j.apcatb.2007.11.022Search in Google Scholar

31. Dutta, P., Pal, S., Seehra, M. & Shi, Y. (2006). Concentration of Ce3+ and Oxygen Vacancies in Cerium Oxide Nanoparticles[J]. Chem. Mater. 18 (21), 5144–5146. DOI: 10.1021/cm061580n.10.1021/cm061580nSearch in Google Scholar

32. Chen, J.Y., Zhu, B.Z., Du, T.K., Sun, Y.L., Zhu, Z.C., Yin, S.L. & Dong, Z. (2017). Low-temperature SCR Denitrification Performance of CO Modified Fe_2O_3/AC Catalyst [J]. Nonfer. Metals Engin. 007(002), 99–102. DOI: 10.3969/j. issn.2095-1744.2017.02.019.Search in Google Scholar

33. Li, J., Li, B.W. & Zhang, B.W. (2011). Microwave Carbothermal Reduction of Fe2O3 to Fe3O4 Powder[J]. J. Univ. Sci. Technol. Beijing. 33(9), 1127–1132. DOI: CNKI:11-2520/TF.20110919.1319.015.Search in Google Scholar

34. Yao, X.J., Ma, K.L. & Zou, W.X. (2017). Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J]. Chinese J. Catal. 038(001), 146–159. DOI: CNKI:SUN:CHUA.0.2017-01-020.10.1016/S1872-2067(16)62572-XSearch in Google Scholar

35. Chen, C.M., Cao, Y. & Liu, S.T. (2018). Research progress of modified vanadium-titanium-based SCR catalysts[J]. Chinese J. Catal. (8). DOI: 10.1016/S1872-2067(18)63090-6.10.1016/S1872-2067(18)63090-6Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering