Open Access

Technological aspects of synthesis of poly(ethylene glycol) mono-1-propenyl ether monomers


Cite

1. Fink, J.K. (2013). Reactive polymers fundamentals and applications. A concise guide to industrial polymers (2nd ed.) New York: William Andrew Inc;.Search in Google Scholar

2. Wicks, Z.W., Jones, F.N., Pappas, S.P. & Wicks, D.A. (2007). Organic Coatings: Sci. Technol. (3rd ed.) New Jork: Wiley-Interscience.10.1002/047007907XSearch in Google Scholar

3. Mishra, M. & Yagci, Y. (2009). Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology (2nd ed.) New York: CRC Press Taylor & Francis Group.Search in Google Scholar

4. Crivello, J. & Jo, K. (1993). Propenyl ethers. I. The synthesis of propenyl ether monomers. J. Polym. Sci. Part A: Polym. Chem. 31, 1473–1482. DOI: 10.1002/pola.1993.080310616.10.1002/pola.1993.080310616Search in Google Scholar

5. Behr, A. & Neubert, P. (2012). Appl. Homogen. Catal. (1st ed.) Weinheim: Wiley-VCH.Search in Google Scholar

6. McGrath, D.V. & Grubbs, R.H. (1994). The mechanism of aqueous ruthenium(II)-catalyzed olefin isomerization. Organometallics 13, 224–235. DOI: 10.1021/om00013a035.10.1021/om00013a035Search in Google Scholar

7. Kuźnik, N. & Krompiec, S. (2007). Transition metal complexes as catalysts of double-bond migration in O-allyl systems. Coord. Chem. Rev. 251, 222–233. DOI: 10.1016/j. ccr.2006.07.006.Search in Google Scholar

8. Krompiec, S., Antoszczyszyn, M., Urbala, M. & Bieg, T. (2000). Isomerization of Allyl Ethers of Diols and Triols Catalyzed by Ruthenium Complexes. Pol. J. Chem. 74, 737–739. DOI: 10.1002/chin.200034023.10.1002/chin.200034023Search in Google Scholar

9. Krompiec, S., Kuźnik, N., Urbala, M. & Rzepa, J. (2006). Isomerization of Alkyl Allyl and Allyl Silyl ethers catalysed by ruthenium complexes. J. Mol. Catal. A: Chem. 248, 198–209. DOI: 10.1016/j.molcata.2005.12.022.10.1016/j.molcata.2005.12.022Search in Google Scholar

10. Urbala, M., Kuźnik, N., Krompiec, S. & Rzepa, J. (2004). Highly Selective Isomerization of Allyloxyalcohols to Cyclic Acetals or 1-Propenyloxyalcohols. Synlett. 7, 1203–1026. DOI: 10.1055/s-2004-825597.10.1055/s-2004-825597Search in Google Scholar

11. Urbala, M. (2005). The study on the reaction of 4-ally-loxybutane-1-ol with ruthenium (II) complexes. Pol. J. Chem. Technol. 7, 48–50.Search in Google Scholar

12. Urbala, M., Krompiec, S., Penkala, M., Danikiewicz, W. & Grela, M. (2013). Solvent-free Ru-catalyzed isomerization of allyloxyalcohols: methods for highly selective synthesis of 1-propenyloxyalcohols. Appl. Catal. A Gen. 451, 101–111. DOI: 10.1016/j.apcata.2012.11.009.10.1016/j.apcata.2012.11.009Search in Google Scholar

13. Urbala, M. (2010). The effectiveness of ruthenium(II) complexes and ruthenium trichloride as pre-catalysts in solvent-free isomerization of model alkyl allyl ether. Appl. Catal. A Gen. 377, 27–34. DOI: 10.1016/j.apcata.2010.01.010.10.1016/j.apcata.2010.01.010Search in Google Scholar

14. Urbala, M. (2015). Solvent-free [Ru]-catalyzed isomerization of allyl glycidyl ether: The scope, effectiveness and recycling of catalysts, and exothermal effect. Appl. Catal. A Gen. 505, 382–393. DOI: 10.1016/j.apcata.2015.08.012.10.1016/j.apcata.2015.08.012Search in Google Scholar

15. Martysz, D., Urbala, M., Antoszczyszyn, M. & Pilawka, R. (2002). l-Propenyl ethers of butanediol as effective modifiers of UV-cured epoxy coatings in cationic polymerization. Polimery. 11–12, 849–851. DOI: 10.14314/polimery.2002.849.10.14314/polimery.2002.849Search in Google Scholar

16. Martysz, D., Antoszczyszyn, M., Urbala, M., Krompiec, S. & Fabrycy, E. (2003). Synthesis of 1-propenyl ethers and their using as modifiers of UV-cured coatings in radical and cationic polymerization. Prog. Org. Coat. 46, 302–311. DOI: 10.1016/S0300-9440(03)00018-3.10.1016/S0300-9440(03)00018-3Search in Google Scholar

17. Czech, Z., Urbala, M. & Martysz, D. (2004). New generation of cationically UV-cured epoxy adhesives containing dyes. Polimery 7–8, 561–564. DOI: 10.14314/polimery.2004.561.10.14314/polimery.2004.561Search in Google Scholar

18. Czech, Z. & Urbala, M. (2004). Application of novel unsaturated organosilane ethers in cationic UV-crosslinkable acrylic PSA systems. Polimery 11–12, 837–840. DOI: 10.14314/polimery.2004.837.10.14314/polimery.2004.837Search in Google Scholar

19. Czech, Z. & Urbala, M. (2007). UV-crosslinked acrylic pressure-sensitive adhesive systems containing unsaturated ethers. Polimery 6, 438–442.10.14314/polimery.2007.438Search in Google Scholar

20. Herzberger, J., Niederer, K., Pohlit, H., Seiwert, J., Worm, M., Wurm, F.R. & Frey, H. (2016). Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem. Rev. 116, 2170–2243. DOI: 10.1021/acs.chemrev.5b00441.10.1021/acs.chemrev.5b0044126713458Search in Google Scholar

21. Li, Z. & Chau, Y. (2011). A facile synthesis of branched poly(ethylene glycol) and its heterobifunctional derivatives. Polym. Chem. 2, 873–878. DOI: 10.1039/C0PY00339E.10.1039/c0py00339eSearch in Google Scholar

22. Vansteenkiste, S., Matthijs, G., Schacht, E., De Schrijver, F.C., Van Damme, M. & Vermeersch, J. (1999). Preparation of Tailor-Made Multifunctional Propenyl Ethers by Radical Copolymerization of 2-(1-Propenyl)oxyethyl Methacrylate. Macromolecules 32(1), 55–59. DOI: 10.1021/ma980458+.10.1021/ma980458+Search in Google Scholar

23. Thi, T.T.H., Pilkington, E.H., Nguyen, D.H., Lee, J.S., Park, K.D. & Truong, N.P. (2020). The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers 12, 298–319. DOI: 10.3390/polym1202029810.3390/polym12020298707744332024289Search in Google Scholar

24. Ota K., Kai K. & Uchida H., JP 2000143567 (2000) to Showa Denko K. K., Japan.Search in Google Scholar

25. Kuo, L.Y. & Delaney, F.E. (2015). Catalytic isomerization of allyl functionalities in water by hexaaquaruthenium(II) tosylate. Inorg. Chim. Acta, 435, 335–339. DOI: 10.1016/j. ica.2015.07.001.Search in Google Scholar

26. Pertici, P., Malanga, C., Guintoli, A., Vitulli, G. & Martra, G. (1996). The (η6-naphthalene)(η4-cycloocta-1,5-diene) ruthenium(0) complex as precursor for homogeneous and heterogeneous catalysts in the isomerization of allyl ethers and allyl acetals to vinyl derivatives. Gazz. Chim. Ital. 126, 587–593.Search in Google Scholar

27. The energy minimized structures of allylalcohol substrates were generated via molecular mechanics of MM2 program in Chem3D Pro software (in ChemBioDraw Ultra 13.0 Cambridge software) using the set functions.Search in Google Scholar

28. Plausible structure of complexes formed via temporary coordination of ruthenium by 2-allyloxyethanol or 2-[2-(allyloxy)etoxy]ethanol were determined in ChemSketch (ACD/ Labs 2018.1.1 software) with using 3D optimization function.Search in Google Scholar

29. Winterton, N. (2011). Chemistry for Sustainable Technologies: A Foundation. London: RSC Publishing.Search in Google Scholar

30. Dunn, P.J., Hii, K.K., Krische, M.J. & Williams, M.T. (2013) Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries. New York: John Wiley & Sons.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering